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1. (20 marks) Prove that

(n + 2)2017 + 20n2010
− 2017n17 = Θ(n2017).

by

(a) using the definition of Θ.

(b) using the limit rule.

2. (10 marks) Prove that for any real constants a, b, c, with a > 0, we have

(n+ 20a)b + 17anc = Θ(nmax{b,c}).

3. (20 marks) Define a recurrence T (n) for the following code

int f(int m, int n)

{

if (n<=1)

return m+2017;

else

return n+f(m+17,n-3);

}

(a) Solve the recurrence and represent it in O notation.

(b) Solve the recurrence and represent it in O notation for the case when we replace the
return line by

return 2n+f(0,n/7);

4. (10 marks) Write a code corresponding to the following running time:

T (n) = n2 + 2n + T (n− 7) .
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5. (10 marks, each, maximum 50)

For the following problems use the theory learned in class. In case you have to use Master
Theorem, please use the version from the slides, not the one in the textbook.

Solve the following recurrences

(a)

T (n) =

{

n+ 2, if n = 0, n = 1, n = 2 or n = 3
4T (n− 1)− 6T (n− 2) + 4T (n− 3)− T (n− 4), otherwise,

(b) T (n) = 25T

(

n

5

)

+ n2;

(c) T (n) = 16T

(

n

4

)

+ n;

(d) T (n) = 15T

(

n

4

)

+ n2;

(e) T (n) = 5T (n
3
) +

3
√

n4;

(f) T (n) = 16T

(

n

4

)

+ n
√

n.

(g)

T (n) =

{

1, if n = 0
3T (n − 1) + n2 + 2n+ 3 + 2n−3(n− 1), otherwise;


