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Question: How can we find the most cop-win graph is a given
family?

Undergraduate supervisor: Shannon Fitzpatrick (Cops and
Robber)
Graduate supervisor: Jason Brown (Graph Polynomials)

Result: A graph polynomial to quantify the “cop-win-ness” of a
given graph.
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Intro Unicyclic Bicyclic Conclusion

If vertices fail independently at random with probabilty p, what
is the probability that the following graph is cop-win?

v5
v4 v3

v2v1

All vertices operational: p5

One vertex fails: 4p4(1 − p)
Two vertices fail: 10p3(1 − p)2

Three vertices fail: 8p2(1 − p)3

Four vertices fail: 5p(1 − p)4

Prob= 5 p (1 − p)4+8 p2 (1 − p)3+10 p3 (1 − p)2+4 p4 (1 − p)+p5
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Def: The node cop-win reliability of G, denoted NCRel(G, p), of
is the probability that the operational nodes induce a cop-win
graph.

If Wi(G) is number of induced order i cop-win subgraphs, then

NCRel(G, p) =
n∑

i=1
Wi(G)(1 − p)n−ipi.

Def: A graph G ∈ G is uniformly most reliable (UMR) in G if
NCRel(G, p) ≥ NCRel(H, p) for all p ∈ [0, 1] and H ∈ G.

We can now compare graphs by how cop-win they are!
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Figure: NCRel(Pn, p) for 3 ≤ n ≤ 11.
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Figure: NCRel(Cn, p) for 4 ≤ n ≤ 12.
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The node reliability (Stivaros 1990) of G, denoted
NRel(G, p), of is the probability that the operational nodes
induce a connected graph.
Let Si(G) denote the number of order i connected induced
subgraphs.

Fast Facts:
For i ≤ 3, Wi(G) = Si(G) and for i > 4 Wi(G) ≤ Si(G) for
all graphs G.

NCRel(G, p) ≤ NRel(G, p) for all graphs G.
NCRel(G, p) = NRel(G, p) if and only if G is chordal. item
If G ∈ G is chordal and NRel(G, p) ≥ NRel(H, p) for all
p ∈ [0, 1] and H ∈ G, then G is UMR in G.
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More tools:
The connected set polynomial of G, denoted CS(G, x), is
defined by

CS(G, x) =
n∑

k=1
Sk(G)xk.

The cop-win polynomial of G, denoted CW(G, x), is defined
by

CW(G, x) =
n∑

k=1
Wk(G)xk.

For polynomials p(x) and q(x), if p(x) is coefficient-wise
greater than or equal to q(x), we write q(x) ⪯ p(x).
For G ∈ G, if CW(H, x) ⪯ CW(G, x) for all H ∈ G, then G
is UMR in G.

Question: Which families of graphs is it of interest to find UMR
graph(s)?
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Let Un denote the family of all unicyclic graphs of order n
(connected simple graphs with n edges).

Known that K1,n−1 is UMR for trees (Stivaros 1990).
Unicyclic graphs next smallest interesting case.
UMR graphs with respect to node reliability do not exist in
Un (Stivaros 1990).
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Question: Do you think there is a UMR graph in Un?

Question: If yes to prev. question, what graph do you think it
is?

From computations, there is either no UMR graph or it is
between Un and Cn.

vn−3

v2

v1

...

Figure: Un.
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Figure: Plots of NCRel(U4, p) and NCRel(C4, p).
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Lemma (Ahmed-C. 2022) CW(H, x) ⪯ CW(Un, x) for all
H ∈ Un \ {Cn} and n ≥ 5.

Lemma (Ahmed-C. 2022): If v ∈ V (G) and u ∈ V (H) such that
1) CS(G − v, x) ⪯ CS(H − u, x),
2) CS(G/v, x) ⪯ CS(H/u, x), and
3) CS(H − N [u], x) ⪯ CS(G − N [v], x),

then CS(G, x) ⪯ CS(H, x).
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v2v1

(a) G

v4 v3
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(b) G/v5
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Issue: CW(Cn, x) ̸⪯ CW(Un, x) since
Wn−1(Cn) = n > Wn−1(Un) = n − 1.

Lemma (Ahmed-C. 2022): For n ≥ 5,
NCRel(Un, p) > NCRel(Cn, p) for all p ∈ (0, 1]

Proof Sketch:
Result follows if NCRel(Un, p) − NCRel(Cn, p) has no roots
in (0, 1].

This happens if and only if CW(Un, x) − CW(Cn, x) has no
positive real roots.
Use more analytic techniques to show that
CW(Un, x) − CW(Cn, x) has no positive real roots.

Theorem (Ahmed-C. 2022): For all n ≥ 5 Un is UMR in Un.
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Theorem (Ahmed-C. 2022): For all n ≥ 5 Un is UMR in Un.



Intro Unicyclic Bicyclic Conclusion

Issue:Exciting Opportunity: CW(Cn, x)̸⪯ CW(Un, x) since
Wn−1(Cn) = n > Wn−1(Un) = n − 1.

Lemma (Ahmed-C. 2022): For n ≥ 5,
NCRel(Un, p) > NCRel(Cn, p) for all p ∈ (0, 1]

Proof Sketch:
Result follows if NCRel(Un, p) − NCRel(Cn, p) has no roots
in (0, 1].
This happens if and only if CW(Un, x) − CW(Cn, x) has no
positive real roots.
Use more analytic techniques to show that
CW(Un, x) − CW(Cn, x) has no positive real roots.

Theorem (Ahmed-C. 2022): For all n ≥ 5 Un is UMR in Un.



Intro Unicyclic Bicyclic Conclusion

1 Intro

2 Unicyclic

3 Bicyclic

4 Conclusion



Intro Unicyclic Bicyclic Conclusion

Let Bn denote the family of all bicyclic graphs of order n
(connected simple graphs with n + 1 edges).

Question: Do you think there is a UMR graph in Bn?

Question: If yes to prev. question, what graph do you think it
is?

vn−4

v2

v1

...

Figure: Bn.
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Figure: NCRel(G, p) for all G ∈ B5.
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Figure: NCRel(G, p) for all G ∈ B6.
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Theorem (Ahmed-C. 2022): For all n ≥ 7,
CW(H, x) ⪯ CW(Bn, x) for all H ∈ Bn, therefore Bn is UMR in
Bn.

x1

x2 xa

x3
xa−1

y1

y2

yb−1

y3· · · · · ·

(a) G1(a, b)

x1

x2 uc

x3 xa−1

y1

u1
y2

yb−1 y3

u2
uc−1

· · · · · ·

· · ·

(b) G2(a, b, c)

v1

v2

va

x1

x2

xb

y1

y2

yc

...
...

...

(c) G3(a, b, c)

Figure: The bicyclic graphs G1(a, b), G2(a, b, c), and G3(a, b, c)
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Conjecture (Ahmed-C. 2022): For all n ≥ 2(m + 1) + 1, Hn,m is
UMR in the family of m-cyclic graphs.

umu2u1

vn−2−mv2v1

v

· · ·

· · ·

Figure: The graph Hn,m.

Question: Let Tn be the set of all 2-cop-win graphs of order n.
Is there are UMR graph in Tn? If so, which one?

Open Problem: Consider edge cop-win reliability.
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Thank You!

Figure: Scan QR code for the paper.
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