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Let 7 be the set of subtrees of G. Let 7g,, be the set of
subtrees of G containing p (vertex or edge).
o The subtree polynomial of G is Sg(z) = Y !V,
TeTa
o The local subtree polynomial of G at p is

TETGJ;

o The local mean subtree order of G at p, u(G,p), is the
average order of a subtree of G containing p.

st (1
Sc,(x) = 4x + 422 + 423 + 42* 1w(Cy) = % zllg'

Seye(x) = 2% + 223 + 324 u(Cy,e) =
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In the 1980s, Jamison initiated the study of subtrees of trees.
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In 2018, Chin, Gordon, MacPhee & Vincent extended the study
of subtrees from trees to graphs by considering:

o The sutbree polynomial, Sg(z) of graphs.
o The shape of the coefficient sequence of S (x).
o The probability that a randomly chosen tree is spanning.

@ The mean subtree order of a graph G, u(G).

Conjecture (Chin et al. 2018): Suppose that G is a connected
multigraph, and that H is obtained from G by adding an edge
between two distinct vertices of G. Then p(G) < u(H).

It would follow that P,, minimizes and K, maximizes u(G)
among all connected graphs of order n.
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o Conjecture is true for all simple graphs of order < 6
(verified in Sagemath).

b

Figure: G

o u(G + ab) — u(G) =~ —0.000588

o (@ is the smallest counterexample to the Conjecture and the
unique counterexample of order 7.

@ 347 counterexamples of order 8!
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Is this just an anomaly for small graphs?
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up U2 Un

Figure: Ko 5 Hy,

o u(Kay) > u(Hy) for all n > 6.
o But, u(Ksp) — pn(Hy) — 0 as n — oo.
o max{u(Kay)— u(Hy,) :n > 1} ~ 0.070067.
Maybe adding an edge cannot decrease u(G) by too much?
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Theorem (C.-Mol 2020): For every tree T' of order n > 3, there
is a graph H, obtained from 7" by joining two distinct,
nonadjacent vertices, such that u(H) > u(T).

Figure: T'; H

Key proof ingredients: Show u(H,vw) > pu(T, ).

Local/Global Mean Inequality (Jamison 1983): If T is a tree,
then for all uw € V(T'), u(T,v) > u(T') with equality if and only
if T = K.
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Q: Why is Chin et al’s conjecture for multigraphs but ours is
just on graphs?

Lemma (C.-Mol 2020): If G is a multigraph with E(G) # 0,
then there exists an edge e € F(G) such that
u(G,e) > u(G) > u(G —e).

Proposition (C.-Mol 2020): Let G be a multigraph of order at
least 2. Then there is a multigraph H, obtained from G by
adding a new edge between a pair of distinct vertices of G, such
that u(H) > pu(G).
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Open Problems

Conjecture: Suppose G is a connected graph which is not
complete. Then there is a graph H, obtained from G by joining
two distinct, nonadjacent vertices, such that pu(H) > p(G).

Conjecture: If G is a connected graph of order n, then
p(Pr) < u(G) < p(Kn).

Problem: Suppose that a graph H is obtained from a connected
graph G by adding an edge between two nonadjacent vertices of
G. Determine sharp bounds on Den(H) — Den(G).

.
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Figure: A mean subtree.
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