Critical (P_5, W_4) -free graphs

Ben Cameron (he/him)

University of Prince Edward Island

brcameron@upei.ca

CanaDAM 2025 Ottawa, Ontario.

May 21, 2025

Joint work with Wen Xia, Shenwei Huang, Jan Goedgebeur, Jorik Jooken, & Iain Beaton

 (P_5, W_4) -free

Future Worl

Conclusion 00

(a) Wen Xia

(b) Shenwei Huang

(c) Jorik Jooken

(d) Jan Goedgebeur

(e) Iain Beaton

 (P_5, W_4) -fre

Future Work

Definition: For fixed k, the k-COLOURING decision problem is to determine if a given graph is k-colourable.

 (P_5, W_4) -free

Future Work

Conclusion 00

Definition: For fixed k, the k-COLOURING decision problem is to determine if a given graph is k-colourable.

• k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972, Lovász 1973)

 (P_5, W_4) -free

Future Work

Conclusion 00

Definition: For fixed k, the k-COLOURING decision problem is to determine if a given graph is k-colourable.

• k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972, Lovász 1973)

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010): k-COLOURING P_5 -free graphs can be solved in polynomial time for all k.

 (P_5, W_4) -free

Future Work

Conclusion 00

Definition: For fixed k, the k-COLOURING decision problem is to determine if a given graph is k-colourable.

• k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972, Lovász 1973)

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010): k-COLOURING P_5 -free graphs can be solved in polynomial time for all k.

• P_5 -free graphs of interest since k-COLOURING H-free graphs remains NP-complete for some $k \geq 3$ for all larger connected graphs H (Huang 2016).

Definition: For fixed k, the k-COLOURING decision problem is to determine if a given graph is k-colourable.

• k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972, Lovász 1973)

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010): k-COLOURING P_5 -free graphs can be solved in polynomial time for all k and the algorithm gives a valid k-colouring if one exists.

- P_5 -free graphs of interest since k-COLOURING H-free graphs remains NP-complete for some $k \geq 3$ for all larger connected graphs H (Huang 2016).
- A k-colouring is a certificate to verify a "yes".

Definition: For fixed k, the k-COLOURING decision problem is to determine if a given graph is k-colourable.

• k-COLOURING is NP-complete for all $k \ge 3$ (Karp 1972, Lovász 1973)

Theorem (Hoàng-Kamiński-Lozin-Sawada-Shu 2010): k-COLOURING P_5 -free graphs can be solved in polynomial time for all k and the algorithm gives a valid k-colouring if one exists.

- P_5 -free graphs of interest since k-COLOURING H-free graphs remains NP-complete for some $k \geq 3$ for all larger connected graphs H (Huang 2016).
- A k-colouring is a certificate to verify a "yes".
- How can we verify a "no"?

Critical Graphs $0 \bullet 00$	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	$\stackrel{\mathrm{Conclusion}}{\circ\circ}$

• A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.

Critical Graphs $0 \bullet 00$	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	Conclusion 00

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Critical Graphs o●oo	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	Conclusion oo

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLOURING.

Critical Graphs o●oo	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	Conclusion 00

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLOURING.

Open Problem: Determine all hereditary families of graphs that admit a polynomial-time certifying k-COLOURING algorithm for all k (assuming $P \neq NP$).

$ \begin{array}{c} \textbf{Critical Graphs} \\ \textbf{0000} \\ \end{array} \begin{array}{c} (P_5, H) \text{-free} \\ \textbf{0000} \\ \end{array} \begin{array}{c} (P_5, W_4) \text{-free} \\ \textbf{00000} \\ \end{array} \begin{array}{c} \textbf{Future Work} \\ \textbf{0000} \\ \textbf{0000} \\ \end{array} \begin{array}{c} \textbf{Conclust} \\ \textbf{0000} \\ \end{array} $	
--	--

- A graph G is k-critical if G is not (k-1)-colourable, but every proper induced subgraph of G is.
- Every graph that is not k-colourable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLOURING.

Open Problem: Determine all hereditary families of graphs that admit a polynomial-time certifying k-COLOURING algorithm for all k (assuming $P \neq NP$).

 \implies Such an algorithm exists when there are only finitely many k-critical graphs in the hereditary family.

Critical Graphs 0000	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	$_{\rm oo}^{\rm Conclusion}$

Critical Graphs 0000	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	$\underset{00}{\operatorname{Conclusion}}$

Critical Graphs 0000	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	$_{\rm oo}^{\rm Conclusion}$

Critical Graphs 0000	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	$_{\rm oo}^{\rm Conclusion}$

Critical Graphs 0000	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	$_{\rm oo}^{\rm Conclusion}$

Critical Graphs 0000	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	$_{\rm oo}^{\rm Conclusion}$

Critical Graphs 0000	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	$_{\rm oo}^{\rm Conclusion}$

Critical Graphs 000●	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	Conclusion 00

Reasonable Question: Are there only finitely many k-critical P_5 -free graphs for all k?

Critical Graphs $000 \bullet$	(P_5, H) -free	(P_5, W_4) -free	Future Work 0000	Conclusion 00

Reasonable Question: Are there only finitely many k-critical P_5 -free graphs for all k? NO!

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical P_5 -free graphs for all $k \geq 5$.

Critical Graphs 000●	(P_5, H) -free 00000	(P_5, W_4) -free	Future Work 0000	Conclusion 00

Reasonable Question: Are there only finitely many k-critical P_5 -free graphs for all k? NO!

Theorem (Hoàng-Moore-Recoskie-Sawada-Vatshelle 2015): There are infinitely many k-critical P_5 -free graphs for all $k \geq 5$.

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Question 2: For which graphs H are there infinitely many k-critical (P_5, H) -free graphs for all k?

 (P_5, H) -free •0000 (P_5, W_4) -free

Future Work 0000 Conclusion 00

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Theorem (K. Cameron-Goedgebeur-Huang-Shi 2021): For H of order 4 and $k \geq 5$, there are only finitely many k-critical (P_5, H) -free graphs if and only if H is **NOT** $2P_2$ or $K_3 + P_1$.

 (P_5, H) -free 0000

 (P_5, W_4) -free 000000 Future Work

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of order 5 are there only finitely many k-critical (P_5, H) -free graphs for all k?

H of **order 5** are there only finitely many *k*-critical (P_5, H) -free graphs for all k?

True if H is any of the graphs below:

- $\overline{K_5}$ $\overline{P_5}$
- ${\scriptstyle \bullet} \,$ banner

• $K_{2,3}$ or $K_{1,4}$

- $P_2 + 3P_1$
- $P_3 + 2P_1$

- $\overline{P_3 + P_2}$ or gem
- $\bullet~{\rm dart}$

•
$$K_{1,3} + P_1$$
 or $\overline{K_3 + 2P_1}$

 (P_5, H) -free 0000

 (P_5, W_4) -free 000000 Future Work

Open Problem (K. Cameron-Goedgebeur-Huang-Shi 2021): For which graphs H of order 5 are there only finitely many k-critical (P_5, H) -free graphs for all k?

True if H is any of the graphs below:

- $\overline{K_5}$ (Ramsey 1928)
- banner (Brause-Geißer-Schiermeyer 2022)
- $K_{2,3}$ or $K_{1,4}$ (Kamiński-Pstrucha 2019)
- $P_2 + 3P_1$ (C.-Hoàng-Sawada 2022)
- $P_3 + 2P_1$

(Abuadas-C.-Hoàng-Sawada 2024)

- P₅ (Dhaliwal-Hamel-Hoàng-Maffray-McConnel-Panait 2017)
- $\overline{P_3 + P_2}$ or gem (Cai-Goedgebeur-Huang 2023)
- dart (Xia-Jooken-Goedgebeur-Huang 2023)
- $K_{1,3} + P_1$ or $\overline{K_3 + 2P_1}$

(Xia-Jooken-Goedgebeur-Huang 2024)

 (P_5, H) -free 00000

 (P_5, W_4) -free

Future Work

Conclusion 00

Question 2: For which graphs H are there infinitely many k-critical (P_5, H) -free graphs for all k?

 (P_5, W_4) -free 000000 Future Work

Conclusion 00

Question 2: For which graphs H are there infinitely many k-critical (P_5, H) -free graphs for all k?

Theorem (K. Cameron-Goedgebeur-Huang-Shi 2021): There are infinitely many k-critical (P_5, H) -free graphs for all $k \ge 5$ if $H = 2P_2$ or $K_3 + P_1$.

 (P_5, W_4) -free

Future Work

Theorem (C.-Hoàng 2024): There are infinitely many k-critical (P_5, C_5) -free graphs for all $k \ge 6$.

Figure: A 7-critical graph (P_5, C_5) -free graph from the infinite family.

 $\begin{array}{ccc} \mbox{Critical Graphs} & (P_5, H) \mbox{-free} & (P_5, W_4) \mbox{-free} & \mbox{Future Work} & \mbox{Conclusion} & \mbox{oooo} & \mbox{oooo} & \mbox{oooo} & \mbox{oooo} & \mbox{ooo} & \mbox$

Thus, the Open Problem is only open for the following graphs:

- co-gem
- chair (known k = 5)
- cricket

- $C_4 + P_1$
- bull (known k = 5)
- $\overline{P_3 + 2P_1}$

- *W*₄
- $K_5 e$ (known $k \ge 8$)
- K_5 (known k = 5)

Figure: The 4-wheel W_4 .

 $\underset{0000}{\mathrm{Critical\ Graphs}}$

 (P_5, H) -free 00000 (P_5, W_4) -free •00000 Future Work

Conclusion 00

Theorem (xia-Jooken-Goedgebeur-Beaton-C.-Huang 2025): For every fixed integer $k \geq 1$, there are only finitely many k-critical (P_5, W_4) -free graphs.

 (P_5, H) -free 00000 (P_5, W_4) -free

Future Work

Theorem (xia-Jooken-Goedgebeur-Beaton-C.-Huang 2025): For every fixed integer $k \geq 1$, there are only finitely many k-critical (P_5, W_4) -free graphs.

Proof Ideas: Start with corollaries of SPGT:

• If G is k-critical and perfect, then $G = K_k$.

 (P_5, W_4) -free

Future Work

Theorem (xia-Jooken-Goedgebeur-Beaton-C.-Huang 2025): For every fixed integer $k \geq 1$, there are only finitely many k-critical (P_5, W_4) -free graphs.

Proof Ideas: Start with corollaries of SPGT:

- If G is k-critical and perfect, then $G = K_k$.
- Every P_5 -free graph is also C_{2k+1} -free for all $k \geq 3$.

Proof Ideas: Start with corollaries of SPGT:

- If G is k-critical and perfect, then $G = K_k$.
- Every P_5 -free graph is also C_{2k+1} -free for all $k \geq 3$.
- Every W_4 -free graph is also $\overline{C_{2k+1}}$ -free for all $k \geq 3$.

Proof Ideas: Start with corollaries of SPGT:

- If G is k-critical and perfect, then $G = K_k$.
- Every P_5 -free graph is also C_{2k+1} -free for all $k \geq 3$.
- Every W_4 -free graph is also $\overline{C_{2k+1}}$ -free for all $k \geq 3$.
- Thus, a k-critical (P_5, W_4) -free graph must be K_k or contain an induced C_5 or $\overline{C_7}$.

Proof Ideas (cont.): Build from an induced substructure C for $C = C_5$ and $C = \overline{C_7}$ and partition the rest of the vertices by their neighbours on C. Then determine which of these sets are:

 (P_5, H) -free 00000 (P_5, W_4) -free $0 \bullet 0000$ Future Work

Theorem (xia-Jooken-Goedgebeur-Beaton-C.-Huang 2025): For every fixed integer $k \geq 1$, there are only finitely many k-critical (P_5, W_4) -free graphs.

Proof Ideas (cont.): Build from an induced substructure C for $C = C_5$ and $C = \overline{C_7}$ and partition the rest of the vertices by their neighbours on C. Then determine which of these sets are:

• Empty

 (P_5, H) -free 00000 (P_5, W_4) -free $0 \bullet 0000$ Future Work

Theorem (xia-Jooken-Goedgebeur-Beaton-C.-Huang 2025): For every fixed integer $k \geq 1$, there are only finitely many k-critical (P_5, W_4) -free graphs.

Proof Ideas (cont.): Build from an induced substructure C for $C = C_5$ and $C = \overline{C_7}$ and partition the rest of the vertices by their neighbours on C. Then determine which of these sets are:

• Empty

• Cliques

 (P_5, H) -free

 (P_5, W_4) -free $0 \bullet 0000$ Future Work

Theorem (xia-Jooken-Goedgebeur-Beaton-C.-Huang 2025): For every fixed integer $k \geq 1$, there are only finitely many k-critical (P_5, W_4) -free graphs.

Proof Ideas (cont.): Build from an induced substructure C for $C = C_5$ and $C = \overline{C_7}$ and partition the rest of the vertices by their neighbours on C. Then determine which of these sets are:

 $\begin{array}{c} \mbox{Critical Graphs} & (P_5,H)\mbox{-free} & (P_5,W_4)\mbox{-free} & \mbox{Future Work} & \mbox{Conclusion} \\ \mbox{0000} & \mbox{00$

Theorem (xia-Jooken-Goedgebeur-Beaton-C.-Huang 2025): For every fixed integer $k \geq 1$, there are only finitely many k-critical (P_5, W_4) -free graphs.

Proof Ideas (cont.): Of these nonempty sets, determine which pairs are

Critical Graphs (P_5, H) -free (P_5, W_4) -freeFuture WorkConclusion0000000000000000000000

Theorem (xia-Jooken-Goedgebeur-Beaton-C.-Huang 2025): For every fixed integer $k \geq 1$, there are only finitely many k-critical (P_5, W_4) -free graphs.

Proof Ideas (cont.): Of these nonempty sets, determine which pairs are

• Anticomplete

Proof Ideas (cont.): Of these nonempty sets, determine which pairs are

• Anticomplete

• Complete

Proof Ideas (cont.):

Lemma (K. Cameron-Goedgebeur-Huang-Shi 2021)): Let G be a k-critical graph. Then G has no two nonempty disjoint subsets X and Y of V(G) that satisfy all the following conditions.

- X and Y are anticomplete to each other.
- $\bullet \ \chi(G[X]) \leq \chi(G[Y]).$
- Y is complete to N(X).

Proof Ideas (cont.):

Lemma (K. Cameron-Goedgebeur-Huang-Shi 2021)): Let G be a k-critical graph. Then G has no two nonempty disjoint subsets X and Y of V(G) that satisfy all the following conditions.

- X and Y are anticomplete to each other.
- $\bullet \ \chi(G[X]) \leq \chi(G[Y]).$
- Y is complete to N(X).

Proof Ideas (cont.):

Lemma (K. Cameron-Goedgebeur-Huang-Shi 2021)): Let G be a k-critical graph. Then G has no two nonempty disjoint subsets X and Y of V(G) that satisfy all the following conditions.

- X and Y are anticomplete to each other.
- $\bullet \ \chi(G[X]) \leq \chi(G[Y]).$
- Y is complete to N(X).

Using an exhaustive generation algorithm we obtain:

n	# 5-critical	# 5-edge-critical
5	1	1
6	0	0
7	1	1
8	1	1
9	44	7
10	4	1
11	0	0
12	1	1
13	8	6
14	0	0
15	2	1
16	0	0
17	2	2
Total	64	21

Table: An overview of the number of pairwise non-isomorphic 5-critical (P_5, W_4) -free graphs and 5-edge-critical (P_5, W_4) -free graphs.

Oritical Graphs	(P_5, H) -free 00000	(P_5, W_4) -free	Future Work 0000	00 OO
Ι	Figure: All 5-ed	lge-critical (P_5, W_4) -	free graphs.	

 (P_5, H) -free graphs for all k?

Now only open for following graphs:

Recall: Since W_4 is an induced subgraph of $\overline{C_{2\ell+1}}$ for all $\ell \geq 4$, every imperfect k-critical (P_5, W_4) -free graph must contain an induced C_5 or $\overline{C_7}$.

Recall: Since W_4 is an induced subgraph of $\overline{C_{2\ell+1}}$ for all $\ell \geq 4$, every imperfect k-critical (P_5, W_4) -free graph must contain an induced C_5 or $\overline{C_7}$.

The following are graphs of order 5 are induced subgraphs of $\overline{C_{2\ell+1}}$ for all:

$$\begin{array}{c|c} \ell \geq 3 & \ell \geq 4 & \ell \geq 5 \\ \hline \hline \overline{P_5} & W_4 & K_5 \\ \hline \overline{P_4 + P_1} & \overline{P_3 + 2P_1} & \\ \hline \overline{P_3 + P_2} & K_5 - e & \\ \end{array}$$

Table: There are only finitely many k-critical (P_5, H) -free graphs for all of the blue graphs H above.

Recall: Since W_4 is an induced subgraph of $\overline{C_{2\ell+1}}$ for all $\ell \geq 4$, every imperfect k-critical (P_5, W_4) -free graph must contain an induced C_5 or $\overline{C_7}$.

The following are graphs of order 5 are induced subgraphs of $\overline{C_{2\ell+1}}$ for all:

$$\begin{array}{c|c} \ell \geq 3 & \ell \geq 4 & \ell \geq 5 \\ \hline \hline \overline{P_5} & W_4 & K_5 \\ \hline \hline P_4 + P_1 & \overline{P_3 + 2P_1} \\ \hline \hline P_3 + P_2 & K_5 - e \end{array}$$

Table: There are only finitely many k-critical (P_5, H) -free graphs for all of the blue graphs H above.

• The other 5 cases may require different proof techniques...

 $\begin{array}{ccc} \text{Critical Graphs} & (P_5, H)\text{-free} & (P_5, W_4)\text{-free} & \textbf{Future Work} & \text{Conclusion} \\ \text{oooo} & \text{ooooo} & \text{ooooo} & \text{ooooo} & \text{ooooo} \end{array}$

Theorem (Abuadas-C.-Hoàng-Sawada 2024): There are only finitely many k-critical $(P_3 + cP_1)$ -free graphs for all $k \ge 1$ and $c \ge 0$.

Theorem (Adekanye-Bury-C.-Knodel 2024): There are only finitely many k-critical (2P₂, (4, ℓ)-squid)-free graphs for all $k, \ell \geq 1$.

Figure: $(4, \ell)$ -squid

Theorem (Adekanye-Bury-C.-Knodel 2024): There are only finitely many k-critical (2P₂, (4, ℓ)-squid)-free graphs for all $k, \ell \geq 1$.

Figure: $(4, \ell)$ -squid contains an induced chair.

Critical Graphs (P_5, H) -free 00000

Critical Graphs (P_5, H) 0000

Critical Graphs (P_5, H) -free 0000

Critical Graphs (P_5, H) -free 0000 00000

Now only open for following graphs:

 $\underset{0000}{\mathrm{Critical\ Graphs}}$

 (P_5, H) -free

 (P_5, W_4) -free

Future Work

 $\operatorname{Conclusion}_{O \bullet}$

THANK YOU!

