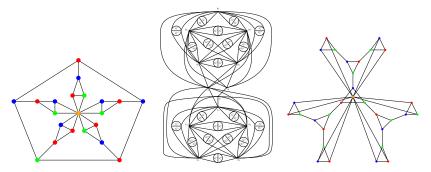
Open Problems

On Gyárfás' Path-Colour Problem

Ben Cameron

Belgian Graph Theory Conference 2025

Joint work with Alexander Clow (SFU)



Open Problems

Figure: Alexander Clow, my co-author (a current PhD student at Simon Fraser University in Vancouver, BC, Canada) with his dog Rory.

Problem Statement $\bullet \circ \circ \circ$

Prior Work

Graphs with Large $\chi - r$

Open Problems

Table of Contents

2 Prior Work

3 Graphs with Large $\chi - r$

Open Problems

On Gyárfás' Path-Colour Problem

Problem (Hajnal-Erdős from Gyárfás in "Fruit Salad")

Is there a function f such that if each odd cycle of a graph spans a subgraph with chromatic number at most r, then the chromatic number of the graph is at most f(r)?

Open Problems

On Gyárfás' Path-Colour Problem

Problem (Hajnal-Erdős from Gyárfás in "Fruit Salad")

Is there a function f such that if each odd cycle of a graph spans a subgraph with chromatic number at most r, then the chromatic number of the graph is at most f(r)?

4. Chromatic bound on cycles and paths.

Szentendre, 1995. One year had gone by but in Paul's book, like in Santa's sack,

6

The electronic journal of combinatorics 4 (1997), #R8

there is always a new surprise. 'A problem with Hajnal: if each odd cycle of a graph G spans a subgraph with chromatic number at most r then the chromatic number of the graph is bounded by a function of r.'

Graphs with Large $\chi - r$

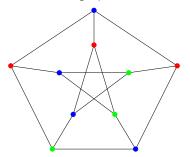
Open Problems

Gyárfás' Conjecture

THE ELECTRONIC JOURNAL OF COMBINATORICS 4 (1997), #R8

Conjecture 2. If each path of a graph spans at most 3-chromatic subgraph then the graph is c-colorable (with a constant c, perhaphs with c = 4).

We will let r(G) = r denote the least integer r such that each path of G spans an r-colourable subgraph.



8

Prior Work ●000

Graphs with Large $\chi - r$

Open Problems

Table of Contents

Problem Statement

2 Prior Work

3 Graphs with Large $\chi - r$

Open Problems

 $\underset{OOO}{\text{Problem Statement}}$

Prior Work 0●00 Graphs with Large $\chi - r$

Open Problems

Why must c > 3?

Theorem (Gallai 1963)

For all $c \ge 4$ there are infinitely many integers n for which there exists a k-critical graph G on n vertices such that no cycle of G has length at least $\frac{2(c-1)\log(n)}{\log(c-2)}$ and no path has length greater than $\frac{4(c-1)\log(n)}{\log(c-2)}$.

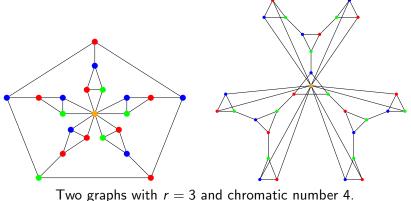
Corollary

For all integer $r \ge 3$, there exists a graph G with r(G) = r and $\chi(G) \ge r + 1$.

Prior Work 00●0 Graphs with Large $\chi - r$

Open Problems

Examples with r = 3 and $\chi = 4$



(Randerath-Schiermeyer 2002, left), (Gallai 1963, right)

Prior Work 000● Graphs with Large $\chi - r$

Open Problems

Current Best

Theorem (Randerath and Schiermeyer 2002)

If G is an n-vertex graph with $r(G) \leq r$, then $\chi(G) \leq r \log_{\frac{8}{2}}(n)$.

Question

Is there a graph G with $r(G) \le 3$ and $\chi(G) > 4$? If r > 3, does there exist a graph H with $r(H) \le r$ and $\chi(H) > r + 1$?

 $\underset{000}{\text{Problem Statement}}$

Prior Work

Graphs with Large $\chi - r$

Open Problems

Table of Contents

1 Problem Statement

2 Prior Work

3 Graphs with Large $\chi - r$

Graphs with Large $\chi - r$

Theorem (Cameron, C. 2025+)

For all $r \ge 3$ there exists a graph G with r(G) = r and

$$\chi(G) \geq \left\lfloor \frac{3r}{2} \right\rfloor - 1.$$

Corollary (Cameron, C. 2025+)

For all constants k there exists a graph G with

 $\chi(G)-r(G)>k.$

Prior Work

The Construction for $r \ge 6$:

For each $r \ge 6$ and $0 \le k \le \lfloor \frac{r}{2} \rfloor - 1$ we define a graph $G_k^{(r)}$ such that

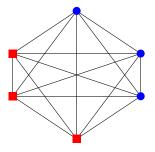
$$\chi(G_k^{(r)}) = r + k$$
 and $r(G_k^{(r)}) = r$.

The Construction for $r \ge 6$:

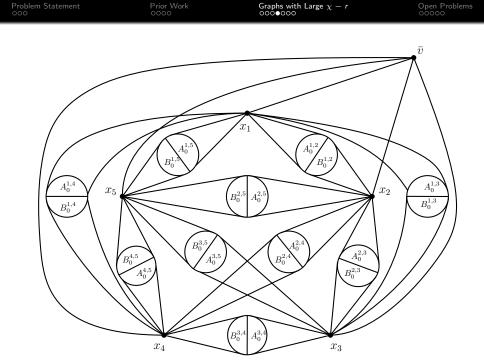
For each $r \ge 6$ and $0 \le k \le \lfloor \frac{r}{2} \rfloor - 1$ we define a graph $G_k^{(r)}$ such that

 $\chi(G_k^{(r)}) = r + k$ and $r(G_k^{(r)}) = r$.

Let $G_0^{(r)} = K_r$.



For each r and k we partition $V(G_k^{(r)})$ into two parts we call the A-set (blue circles) and B-set (red squares).



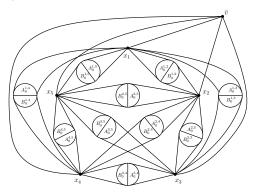
Prior Work

Graphs with Large $\chi - r$

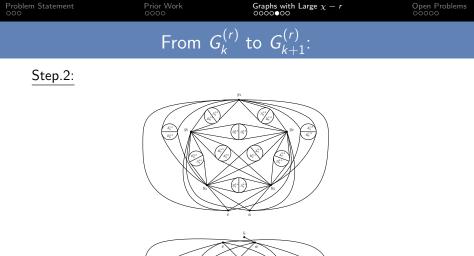
Open Problems

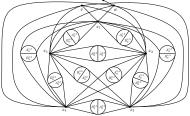
From $G_k^{(r)}$ to $G_{k+1}^{(r)}$:

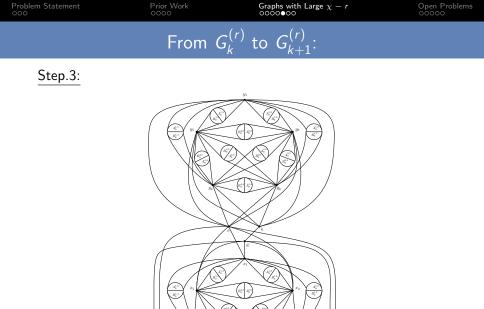
<u>Step.1</u>: Take an independent set $X = \{x_1, \ldots, x_{r+k-1}\}$ add a vertex \overline{v} whose neighbourhood is X, and for all x_i, x_j add a copy of $G_k^{(r)}$ whose only neighbours in $X \cup \overline{v}$ are x_i and x_j . x_i is adjacent to the *A*-set, x_j is adjacent to the *B*-set.



Taking r = 6 and k = 0.





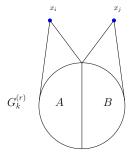


Problem Statement
000Prior Work
0000Graphs with Large $\chi - r$ Open Problems
000000000000000000000000

Why does $\chi(G_k^{(r)})$ increase with k?

Step.1: Suppose
$$\chi(G_k^{(r)}) = r + k$$
.

<u>Step.2</u>: Vertices x_i, x_j in $G_{k+1}^{(r)}$ must receive different colours in an (r+k)-colouring of $G_k^{(r)}$.



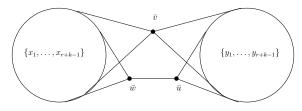
Prior Work

Graphs with Large $\chi - r$

Open Problems

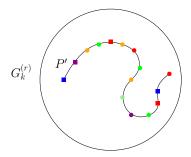
Why does $\chi(G_k^{(r)})$ increase with k?

Step.3: Thus, in an (r + k)-colouring $\bar{v}, \bar{w}, \bar{u}$ receive the same colour.



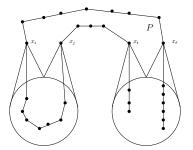
 $\therefore \chi(G_{k+1}^{(r)}) \ge r+k+1.$

Step.1: Suppose for every path P' in $G_k^{(r)}$ there is an *r*-colouring of $\overline{G_k^{(r)}[P']}$ where the *A*-set gets private colours and the *B*-set gets private colours.



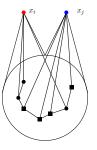
 $\begin{array}{ccc} \begin{array}{c} \begin{array}{c} \text{Prior Work} \\ \text{OOO} \end{array} & \begin{array}{c} \begin{array}{c} \text{Graphs with Large } \chi - r \\ \text{OOOO} \end{array} & \begin{array}{c} \begin{array}{c} \text{Open Problems} \\ \text{OOOO} \end{array} \end{array} \end{array} \end{array}$

<u>Step.2</u>: Consider how a path P in $G_{k+1}^{(r)}$ intersects a copy of $G_k^{(r)}$ adjacent to x_i, x_j .



<u>Step.3</u>: Now we assign x_i, x_j different colours if *P* intersects the copy of $G_k^{(r)}$ adjacent to x_i, x_j . This requires at most 4 colours.

<u>Step.4</u>: Once vertices x_i, x_j are coloured we can extend to the copies of $G_k^{(r)}$ adjacent to x_i, x_j .



We lose control of 1 private A-colour and 1 private B-colour.

 $\underset{000}{\text{Problem Statement}}$

Prior Work 0000 Graphs with Large $\chi - r$

Open Problems ●0000

Table of Contents

1 Problem Statement

2 Prior Work

3 Graphs with Large $\chi - r$

Problem Statement	Prior Work 0000	Graphs with Large $\chi - r$	Open Problems 0●000

The electronic journal of combinatorics 4 (1997), #R8

Conjecture 2. If each path of a graph spans at most 3-chromatic subgraph then the graph is c-colorable (with a constant c, perhaphs with c = 4).

Conjecture (C.-Clow 2025+)

For every constant c > 0, there exists a graph G with $\chi(G) \ge c \cdot r(G)$.

8

Graphs with Large $\chi - r$

Open Problems

Theorem (C.-Clow 2025+)

If H is a forest on at most 4 vertices not isomorphic to the claw, then every H-free graph G has $\chi(G) \leq r(G) + 1$.

Conjecture (C.-Clow 2025+)

If G is a P_5 -free graph, then $\chi(G) = r(G)$.

Graphs with Large $\chi - r$

Open Problems

Theorem (C.-Clow 2025+)

If H is a forest on at most 4 vertices not isomorphic to the claw, then every H-free graph G has $\chi(G) \leq r(G) + 1$.

Conjecture (C.-Clow 2025+)

If G is a P₅-free graph, then $\chi(G) = r(G)$.

Lemma (C.-Clow 2025+)

If G is a graph with $\alpha(G) \leq 3$, then $\chi(G) = r(G)$.

Problem (C.-Clow 2025+)

For all graphs G such that $\alpha(G) \leq 4$, is $\chi(G) = r(G)$?

Theorem (C.-Clow 2025+)

Let $t \ge 4$ be an integer. If G is a $K_{1,t}$ -free graph and $r(G) \le r$, then

$$\chi(G) \leq (t-1)\left(r+\binom{t-1}{2}-3\right).$$

If G is claw-free, then $\chi(G) \leq 2r(G)$.

Question (C.-Clow 2025+)

What is the least integer t such that there exists a $K_{1,t}$ -free graph G with $\chi(G) > r(G)$?

Prior Work

Graphs with Large $\chi - r$ 0000000 Open Problems

THANK YOU!

Figure: Scan QR code for our preprint. Thanks to NSERC!