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Definitions

e P, is the path on n vertices (Ps: e—e—e).

o G+ H denotes the disjoint union of graphs G and H.
[
0 IG=G+G+---+G (P2+2P:: I o).
l
o Colouring here means proper colouring (adjacent vertices
get different colours).

o A graph is H-free if it does not contain H as an induced

subgraph. QI is Ps-free but not Py-free.
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It remains NP-complete when restricted to H-free graphs if
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polynomial-time for H-free graphs, then every component
of H must be a path.
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Definition: For fixed k, the k-COLOURING decision problem is
to determine if a given graph is k-colourable. J

o k-COLOURING is NP-complete for all k£ > 3 (Karp 1972).

o It remains NP-complete when restricted to H-free graphs if
H contains a cycle (Kaminski-Lozin 2007).

o It remains NP-complete when restricted to H-free graphs if
H contains a claw (Holyer 1981; Leven-Gail 1983).

o So assuming P#£NP, if k-COLOURING can be solved in
polynomial-time for H-free graphs, then every component
of H must be a path.

o It remains NP-complete when restricted to Fs-free graphs
for all k£ > 5 (Huang 2016).
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Theorem (Hoang-Kamitiski-Lozin-Sawada-shu 2010) k-COLOURING Ps-free
graphs can be solved in polynomial-time for all k£ and the
algorithm gives a valid k-colouring if one exists.

— |3-COLOURING

— 10

o A k-colouring is a certificate to verify a “yes”.

o How can we verify a “no”?
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Critical Graphs

[ Jele}

o A graph G is k-critical if G is not (k — 1)-colourable, but
every proper induced subgraph of G is.

o Every graph that is not k-colourable has a (k + 1)-critical
induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the
input graph to certify negative answers to k-COLOURING.

Issue: For k > 3 there are infinitely many k-critical graphs.
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Theorem (Bruce-Hoang-Sawada 2009, Maffray-Morel 2012): All twelve 4-critical
Ps-free graphs are given below.
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Reasonable Question: Are there only finitely many k-critical
Ps-free graphs for all k7
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many k-critical Ps-free graphs for all k£ > 5.
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Theorem (IIu{ms,—\hmw‘—|(m’u\ki«\—hu\nwvdn—\'uf.\\u e 2015): There are inﬁnitely
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Question 1: For which graphs H are there only finitely many
k-critical (Ps, H)-free graphs for all k7

Theorem (k. Cameron-Goedgebeur-Huang-shi 2021): For H of order 4 and
k > 5, there are only finitely many k-critical (Ps, H)-free graphs
if and only if H is NOT 2P, or K3+ P;.

(a) 2P2 (b) K3+P1
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Open Problem (k. cameron-Goedgebeur-Huang-shi 2021): For which graphs
H of order 5 are there only finitely many k-critical
(Ps, H)-free graphs for all k7
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Open Problem (k. cameron-Goedgebeur-Huang-shi 2021): For which graphs
H of order 5 are there only finitely many k-critical
(Ps, H)-free graphs for all k7

Finite if H is any of the graphs below:

o banner o Ps

o Kogor Kig o P;+ P, or gem

o Pyt 3P o dart

o P;+2P o K13+ Py or K3+ 2P,
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Open Problem (k. cameron-Goedgebeur-Huang-shi 2021): For which graphs
H of order 5 are there only finitely many k-critical

(Ps, H)-free graphs for all k7

Finite if H is any of the graphs below:

o banner (Brause-Geifler-Schiermeyer

2022)

o K273 or K174 (Kaminski-Pstrucha

2019)

o P2 + 3P1 (C.-Hoang-Sawada 2022)

) P3—|—2P1

(Abuadas-C.-Hoang-Sawada 2024)

o P5 (Dhaliwal-Hamel-Hoang-Maffray-

McConnel-Panait 2017)
o P34+ P or gem
(Cai-Goedgebeur-Huang 2023)

o dart (Xia-Jooken-Goedgebeur-Huang

2023)

o Ki3+ P or K3+2P

(Xia-Jooken-Goedgebeur-Huang 2024)
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Theorem (Chudnovsky-Karthick-Maceli-Maffray 2020): If G is a
(Ps, gem)-free graph, then G is either perfect, in G; for some

i€{l,...,10}, or G € H. (gem= W )

@ @

(a) Gi (d) Ga (e) Gs
(f) Go (i) Go () Gio

(k) Graphs in H
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Question 2: For which graphs H are there infinitely many
k-critical (Ps, H)-free graphs for all k7

Theorem (i1Imng,f\mm»lm4,\1\1«\7‘\;,\\m,yf\nrmH«\ 2015): There are inﬁnitcly
many k-critical (Ps, H)-free graphs for all k > 5 if H = 2P, or
K3+ Pp.

(a) 2P, (b) Ks + Py
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The Strong Perfect Graph Theorem
(Chudnovsky-Robertson-Seymour-Thomas 2006):
G is perfect if and only if no induced subgraph of G is an odd

cycle of length at least five or the complement of one.




(Ps, H)-free
0000e00

The Strong Perfect Graph Theorem
(Chudnovsky-Robertson-Seymour-Thomas 2006):

G is perfect if and only if no induced subgraph of G is an odd
cycle of length at least five or the complement of one.

Simple Observations:
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(Chudnovsky-Robertson-Seymour-Thomas 2006):

G is perfect if and only if no induced subgraph of G is an odd
cycle of length at least five or the complement of one.

Simple Observations:
o If G is k-critical and perfect, then G = K.
o Every Ps-free graph is also Cox1-free for all £ > 3.

Question: How many k-critical (Ps, C5)-free graphs are there?
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The Strong Perfect Graph Theorem
(Chudnovsky-Robertson-Seymour-Thomas 2006):
G is perfect if and only if no induced subgraph of G is an odd

cycle of length at least five or the complement of one.

Simple Observations:
o If G is k-critical and perfect, then G = K.
o Every Ps-free graph is also Cox1-free for all £ > 3.

Question: How many k-critical (Ps, Cs)-free graphs are there? |

V.

Theorem (:Hufnu Moore-Recoskie-Sawada-Vatshelle :m:): There are only
finitely many many 5-critical (Ps, Cs)-free graphs. (In fact,
exactly 13)
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Theorem (C.-Hoang 2024): For all ¢ > 1 and k > 5 there is a
(k + 1)-critical (Ps, Cs)-free graphs of order gk + 1 (infinitely
many).
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Figure: Constructing and colouring the 7-critical graph G(3,6).
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Theorem (C.-Hoang 2024): For all ¢ > 1 and k > 5 there is a
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Figure: Constructing and colouring the 7-critical graph G(3,6).
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Figure: Constructing and colouring the 7-critical graph G(3,6).
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Figure: Constructing and colouring the 7-critical graph G(3,6).
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)24): For all ¢ > 1 and k > 5 there is a

(k + 1)-critical (Ps, Cs)-free graphs of order gk + 1 (infinitely

many).
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Figure: Constructing and colouring the 7-critical graph G(3,6).
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Figure: Constructing and colouring the 7-critical graph G(3,6).
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Figure: Constructing and colouring the 7-critical graph G(3,6).
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Figure: Constructing and colouring the 7-critical graph G(3,6).
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many k-critical Ps-free graphs for all k > 5.
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Recall...

Theorem (Hoang-Moore-Recoskie-Sawada-Vatshelle 2015): 'There are infinitely
many k-critical Ps-free graphs for all k > 5.

They prove this by constructing an infinite family of k-critical
(2P, K3 + Pp)-free graphs!

e &6 o o ©

Figure: P with an induced 2P in red.
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Recall...

Theorem (Hoang-Moore-Recoskie-Sawada-Vatshelle 2015): 'There are infinitely
many k-critical Ps-free graphs for all k > 5.

They prove this by constructing an infinite family of k-critical
(2P, K3 + Pp)-free graphs!
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Figure: P with an induced 2P in red.

Theorem (C.-Hoang 2024): There are infinitely many k-critical
(2P, K3+ Py, Cs)-free graphs for all k > 6.
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Recall...

Theorem (Hoang-Moore-Recoskie-Sawada-Vatshelle 2015): 'There are infinitely
many k-critical Ps-free graphs for all k > 5.

They prove this by constructing an infinite family of k-critical
(2P, K3 + Pp)-free graphs!

e &6 o o ©

Figure: P with an induced 2P in red.

Theorem (C.-Hoang 2024): There are infinitely many k-critical
(2P, K3+ Py, Cs)-free graphs for all k£ > 6. ‘

Fact: Every known infinite family of k-critical Ps-free graphs is
actually 2P>-free! ‘
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Question: Does the finiteness of k-critical (P5, H)-free graphs
always coincide with that of k-critical (2P, H)-free graphs? ‘
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Question: Does the finiteness of k-critical (P5, H)-free graphs
always coincide with that of k-critical (2P, H)-free graphs?

()])(‘1] Pl’()])](‘“l (K. Cameron-Goedgebeur-Huang-Shi 2021). FOI‘ WhiCh graphs
H of order 5 are there only finitely many k-critical
(Ps, H)-free graphs for all k7

X

a claw + Py cricket C chair bull

Figure: Graphs of order 5 where the finiteness is unknown.
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(a) m=3. (b)

Figure: The general form of the (m,¢)-squid graphs for m = 3, 4.
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(a) m = 3.

(2P3, H)-free
O@00000

Uy

w1 w2 Wy

(b) m = 4.

Figure: The general form of the (m, £)-squid graphs for m = 3, 4.
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Lemma, (Adekanye-Bury-C.-Knodel 2024): Let £,k > 1 and
c={U—-1)(k—1)+1. If G is a k-critical (2P, (4, {)-squid)-free
graph, then G is (P + cP;)-free.
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Lemma, (Adekanye-Bury-C.-Knodel 2024): Let £,k > 1 and
c={U—-1)(k—1)+1. If G is a k-critical (2P, (4, {)-squid)-free
graph, then G is (P + cP;)-free.
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Lemma, (Adekanye-Bury-C.-Knodel 2024): Let £,k > 1 and
c={U—-1)(k—1)+1. If G is a k-critical (2P, (4, {)-squid)-free
graph, then G is (P + cP;)-free.

u1

U1
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Lemma, (Adekanye-Bury-C.-Knodel 2024): Let £,k > 1 and
c={U—-1)(k—1)+1. If G is a k-critical (2P, (4, {)-squid)-free
graph, then G is (P + cP;)-free.
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=l-1)(k—-1)+1.If G is a k-critical (2P, (4, £)-squid)-free
graph, then G is (P + cP;)-free.
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Lemma (Adekanye-Bury-C.-Knodel 2024): Let £,k > 1 and
=l-1)(k—-1)+1.If G is a k-critical (2P, (4, £)-squid)-free
graph, then G is (P + cP;)-free.

V.
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Cond e
Theorem (abuadas ¢ toang Sawada 2024 ): There are only finitely many
k-critical (Ps + cP;)-free graphs for all £ > 1 and ¢ > 0. ‘
Theorem (adekanye-Bury-C.-Knodel 2024): There are only finitely many
k-critical (2Ps, (4,()-squid)-free graphs for all k, ¢ > 1.

Uy

wp w2 wy

Figure: (4, £)-squid contains an induced
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Theorem (abuadas ¢ toang Sawada 2024 ): There are only finitely many
k-critical (Ps + cP;)-free graphs for all £ > 1 and ¢ > 0. ‘

Theorem (adekanye-Bury-C.-Knodel 2024): There are only finitely many
k-critical (2Ps, (4,()-squid)-free graphs for all k, ¢ > 1. ‘
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Figure: (4, £)-squid contains an induced chair
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Theorem (abuadas ¢ toang Sawada 2024 ): There are only finitely many
k-critical (Ps + cP;)-free graphs for all £ > 1 and ¢ > 0. ‘

Theorem (adekanye-Bury-C.-Knodel 2024): There are only finitely many
k-critical (2Ps, (4,()-squid)-free graphs for all k, ¢ > 1. ‘

U1

w1 w2 We

Figure: (4, £)-squid contains an induced chair and claw + P;.
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Theorem (Adekanye Bury-C-Knodel 2024): There are only finitely many
k-critical (2P»,(3, ¢)-squid)-free graphs for all k, ¢ > 1.
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Theorem (adekanye-Bury-C.-Knodel 2024): There are only finitely many
k-critical (2P»,(3, ¢)-squid)-free graphs for all k, ¢ > 1. ‘

uz (7%:3

w1 W2 Wy

Corollary (Adekanye-Bury-C.-Knodel 2024): There are only finitely many
k-critical cricket-free graphs for all £ > 1.
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Lemma (Adekanye-Bury-C.-Knodel 2024): Every k-critical (2Ps, bull)-free
graph is (Ps + Pp)-free. J

Theorem (Adekanye-Bury-C.-Knodel 2024): There are only finitely many
k-critical (2P», bull)-free graphs for all k. J

ca

Figure: The bull graph.
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Lemma (Adekanye-Bury-C del 2024): Every k-critical (2P2,bull)—free
graph is (Ps + Pl)—free.

Theorem (Adekanye Bury-C.-Knodel 2024): There are only finitely many
k-critical (2Ps, bull)-free graphs for all k.

Figure: The bull graph.
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n | 4-critical | 5-critical | 6-critical | 7-critical
4 1 0 0 0
5 0 1 0 0
6 1 0 1 0
7 2 1 0 1
8 0 2 1 0
9 0 11 2 1
10 0 0 12 2
11 0 0 126 12
12 0 0 0 128
13 0 0 0 3806
| total | 4| 15 | 142 3947

Table: Number of k-critical (2P, H)-free graphs of order n for k <7
where H is (4, 1)-squid or bull.
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Question: Does the finiteness of k-critical (Ps, H)-free graphs
always coincide with that of k-critical (2P, H)-free graphs? ‘

Question For which graphs H are there only finitely many
k-critical (Ps, H)-free graphs for all k? ‘

When H is order 5, only unknown for following graphs:

@ co-gem ° C4+Pl o Wy

o chair (known e bull (known o K5 — e (known
£=5) k=5) k>8)

o cricket o P3+2P o K5 (known

k=5)



Conclusion
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o

Question: Does the finiteness of k-critical (Ps, H)-free graphs
always coincide with that of k-critical (2P, H)-free graphs? ‘

Question For which graphs H are there only finitely many
k-critical (Ps, H)-free graphs for all k? ‘

When H is order 5, only unknown for following graphs:

@ co-gem o Cy+ P o Wy
o chair (known e bull (known o K5 — e (known
k=25) k=5) k>38)
o cricket o P34+ 2P o K5 (known
k=15)
Theorem (Beaton-c. 2024+ ): There are only finitely many k-critical

(Ps, Ps + P, co-gem)-free graphs for all k.
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