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A graph is H-free if it does not contain H as an induced

subgraph. ﬁ is Ps-free but not Py-free.
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Definition: For fixed k, the k-COLORING decision problem is to
determine if a given graph is k-colorable.

Figure: Decide 3-COLORING for this graph.

o k-COLORING is NP-complete for all £ > 3 (Karp 1972).

o It remains NP-complete when restricted to H-free graphs if
H contains a cycle (Kaminski-Lozin 2007).

o It remains NP-complete when restricted to H-free graphs if
H contains a claw (Hoyler 1981; Leven-Gail 1983).
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ooe

Theorem (Hoang et al. 2010) k-COLORING Ps-free graphs can
be solved in polynomial-time for all £ and the algorithm gives a
valid k-coloring if one exists.

— |3-COLORING — no

o A k-coloring is a certificate to verify a “yes”.

o How can we verify a “no”?
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@000

o A graph G is k-vertex-critical if G is not (k — 1)-colorable,
but every induced subgraph of G is.

o Every graph that is not k-colorable has a
(k 4 1)-vertex-critical induced subgraph.

Issue 1: For k > 3 there are an infinite number of
k-vertex-critical graphs.

Issue 2: k-vertex-critical is a mouthful, so simply k-critical from
now on.
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all k> 3.

Theorem (e.g. Lazebnik-Ustimenko 1995): If H contains an
induced claw, then there is an infinite number of k-critical
H-free graphs for all £ > 3.

Theorem (Hoang et al. 2015): If H contains an induced 2P,
then there is an infinite number of k-critical H-free graphs for
all £ > 5.
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Theorem (chudnovsky-Goedgebeur-Schaudt-zhong 2020): There are only
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NS

Figure: The graphs gem (left) and co-gem=P; + P; (right).
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then either G is perfect, or G is a Py-free expansion of G; for

Theorem (Karthick-Maffray 2018): If G is (gem,co-gem)-free,
some i € {1,2,...,10}, or G € H.

R
(a) Gh (b) G2

(c) Gs (d) Ga (e) G5

i
() Gio

(f) Gs (g) G7

(k) Graphs in H
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Theorem (Abuadas-C.-Hoang-Sawada 2022+) There are only
finitely many k-critical (gem, co-gem)-free graphs for all k& and
every such non-complete graph is a clique-expansion of Cf.

|78 ]9 |10|11]12] 13| 14 | 15 | 16

aE

6
num(k) | 1 \ \ \ \ |6 11 ]17 27 [39 58|80 112 148 | 197 | 253

Table: num(k) denotes the number of k-critical (gem, co-gem)-free

graphs.



Conclusion
[ ]

Question For which values of ¢ > 1 are there only finitely many
k-critical (Py 4 ¢P;)-free graphs for all k7 ‘
Question For which graph H are there only finitely many
k-critical (Ps, H)-free graphs for all k7



Conclusion
[ ]

Question For which values of ¢ > 1 are there only finitely many
k-critical (Py 4 ¢P;)-free graphs for all k7 J

Question For which graph H are there only finitely many
k-critical (Ps, H)-free graphs for all k7 J

u | el

;-'.té"-‘;; 5 :
':*_:-!,: T NSERC
LA CRING

Figure: Scan QR code for the paper. Thanks to NSERC for support!
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