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Definitions

P, is the path on n vertices (Ps: e—e—e).
G 4+ H denotes the disjoint union of graphs G and H.

[
(G=G+G+---+G (P,+2P;: I o).
l
Coloring here means proper coloring (adjacent vertices get
different colors).

©

©

A graph is H-free if it does not contain H as an induced

subgraph. ﬁ is Ps-free but not Py-free.
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Definition: For fixed k, the k-COLORING decision problem is to
determine if a given graph is k-colorable.

Figure: Decide 3-COLORING for this graph.

o k-COLORING is NP-complete for all £ > 3 (Karp 1972).

o It remains NP-complete when restricted to H-free graphs if
H contains a cycle (Kaminski-Lozin 2007).

o It remains NP-complete when restricted to H-free graphs if
H contains a claw (Holyer 1981; Leven-Gail 1983).
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Coloring
ooe

Theorem (Hoang et al. 2010) k-COLORING Ps-free graphs can
be solved in polynomial-time for all £ and the algorithm gives a
valid k-coloring if one exists.

— |3-COLORING — no

o A k-coloring is a certificate to verify a “yes”.

o How can we verify a “no”?
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Critical Graphs

@00

e A graph G is k-critical if G is not (k — 1)-colorable, but
every induced subgraph of G is.

e Every graph that is not k-colorable has a (k 4 1)-critical
induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the
input graph to certify negative answers to k-COLORING.

Issue: For k > 3 there are infinitely many k-critical graphs.
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Question 1: For which graphs H are there only finitely many
k-critical (Ps, H)-free graphs for all k7

Theorem (K. Cameron-Goedgebeur-Huang-Shi 2021): For H
order 4 and k > 5, there are infinitely many k-critical
(Ps, H)-free graphs if and only if H is 2P or K3 + P.

Also finite if H is any from the list below:

e banner (Brause-Geifier- o P3+ 2P, (Abuadas-C.-
Schiermeyer 2022) Hoang-Sawada 2023+)

o Kyzor Ki4 o P5 (Dhaliwal et al. 2017)
(Kaminski-Pstrucha 2019)

o P, 43P, ° Py + P or gem
(C.-Hoang-Sawada 2022) (Cai-Goedgebeur-Huang

2023)
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oeo

Theorem (Chudnovsky-Karthick-Maceli-Maffray 2020): If G is a
(Ps, gem)-free graph, then G is either perfect, in G; for some

i€{l,...,10}, or G € H. (gem= W )

@ @

(a) Gi (d) Ga (e) Gs
(f) Go (i) Go () Gio

(k) Graphs in H
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Theorem (Cai-Goedgebeur-Huang 2023): There are only finitely
many k-critical (Ps, gem)-free graphs for all k.

Proof (Cai-Goedgebeur-Huang 2023): If G is a k-critical
(Ps, gem)-free graph, then |G| < 5k + 228 + 922" > 1078914,

Proof (C.-Hoang 2023): If G is a k-critical (Ps, gem)-free
graph, then G ¢ H and |G| < (k — 2)°.

The number of k-critical (P5, gem)-free graph is exactly:

o 3 when k=4 (Cai-Goedgebeur-Huang 2023
o 7 when k=5 (Cai-Goedgebeur-Huang 2023
o 19 when k=6 (C.-Hoang 2023

)
)
)
@ 46 when k=7 (C.-Hoang 2023)
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Question 2: For which graphs H are there infinitely many
k-critical (Ps, H)-free graphs for all k?

Theorem (Hoang et al. 2015): There are infinitely many
k-critical (2P, K3 + Pp)-free graphs for all k£ > 5.

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020):
There are infinitely many k-critical Pr-free for all k > 4.

(a) 2P, (b) Ks+ P
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The Strong Perfect Graph Theorem
(Chudnovsky-Robertson-Seymour-Thomas 2006):

G is perfect if and only if no induced subgraph of G is an odd
cycle of length at least five or the complement of one.

Simple Observations:
o If G is k-critical and perfect, then G = K.
o Every Ps-free graph is also Cyyq1-free for all k > 3.

Question: How many k-critical (Ps, C5)-free graphs are there? |

Theorem (Hoang et al. 2015): There are only finitely many
many 5-critical (Ps, C5)-free graphs. (In fact, exactly 13)
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Theorem (C.-Hoang 2023+): G(q,k — 1) is k-critical
(Ps, Cs)-free graphs for all ¢ > 1 and k& > 6. Thus, there are
infinitely many such graphs.

Let G(q, k) be a graph on vertex set {vo,v1, ..., Ukq} With
N(v;) = {vi—1,vig1 } U {Vigkjem :m=2,3,...k—1land =0,1,....q — 1}
where each index is taken modulo kq + 1.
e When ¢ =1, G(Qv k) = Kk’-i-l
o When q= 27 G(Qv k) = CQk-‘r—l
e When k =3, G(r, k) = G, from Chudnovsky et al’s
4-critical Pr-free family.
o When k =4, G(p, k) = G, from Hoang et al’s 5-critical
Ps-free family.
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Figure: Constructing and colouring the 7-critical graph G(3, 6).
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Figure: Constructing and colouring the 7-critical graph G(3, 6).
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Figure: Constructing and colouring the 7-critical graph G(3, 6).
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Figure: Constructing and colouring the 7-critical graph G(3, 6).
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Figure: Constructing and colouring the 7-critical graph G(3, 6).
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Question For which graphs H are there only finitely many
k-critical (Ps, H)-free graphs for all k? J

When H is order 5, only unknown for following graphs:

o claw+P; o Cy+ P o P34+ 2P
o P+ P e bull (known o W,
o chair (known k=25)

k=15) o dart ° K5 —e
o diamond + P; o K3+ 2P o Kj5

THANK You!
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Figure: Scan QR code for (Ps, gem)-free paper. Thanks to NSERC!
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