The node cop-win reliability of a graph

Ben Cameron (he/him)

The King's University

ben.cameron@kingsu.ca

(Joint work with Maimoonah Ahmed)

GRASCan2022

August 4, 2022

Intro	
•0000000	ļ

Intro	Unicyclic	Bicyclic	Conclusion
o●oooooo	000000	00000	000

Intro	Unicyclic	Bicyclic	Conclusion
⊙●○○○○○○	oooooo	00000	000

• Undergraduate supervisor: Shannon Fitzpatrick (Cops and Robber)

Intro	Unicyclic	Bicyclic	Conclusion
0000000	000000	00000	000

- Undergraduate supervisor: Shannon Fitzpatrick (Cops and Robber)
- Graduate supervisor: Jason Brown (Graph Polynomials)

Intro	Unicyclic	Bicyclic	$\begin{array}{c} { m Conclusion} \\ { m ooo} \end{array}$
0000000	oooooo	00000	

- Undergraduate supervisor: Shannon Fitzpatrick (Cops and Robber)
- Graduate supervisor: Jason Brown (Graph Polynomials)

Result: A graph polynomial to quantify the "cop-win-ness" of a given graph.

 $_{\rm 0000000}^{\rm Intro}$

Intro 00●00000

If vertices fail independently at random with probability p, what is the probability that the following graph is cop-win?

• All vertices operational: p^5

- All vertices operational: p^5
- One vertex fails:

- All vertices operational: p^5
- One vertex fails:

- All vertices operational: p^5
- One vertex fails:

- All vertices operational: p^5
- One vertex fails:

 $_{\rm oo \bullet o o o o o o}^{\rm Intro}$

- All vertices operational: p^5
- One vertex fails:

- All vertices operational: p^5
- One vertex fails:

- All vertices operational: p^5
- One vertex fails: $4p^4(1-p)$

- All vertices operational: p^5
- One vertex fails: $4p^4(1-p)$
- Two vertices fail: $10p^3(1-p)^2$

- All vertices operational: p^5
- One vertex fails: $4p^4(1-p)$
- Two vertices fail: $10p^3(1-p)^2$
- Three vertices fail: $8p^2(1-p)^3$

- All vertices operational: p^5
- One vertex fails: $4p^4(1-p)$
- Two vertices fail: $10p^3(1-p)^2$
- Three vertices fail: $8p^2(1-p)^3$
- Four vertices fail: $5p(1-p)^4$

- All vertices operational: p^5
- One vertex fails: $4p^4(1-p)$
- Two vertices fail: $10p^3(1-p)^2$
- Three vertices fail: $8p^2(1-p)^3$
- Four vertices fail: $5p(1-p)^4$

Prob= $5 p (1-p)^4 + 8 p^2 (1-p)^3 + 10 p^3 (1-p)^2 + 4 p^4 (1-p) + p^5$

Intro	Unicyclic	Bicyclic	$\begin{array}{c} { m Conclusion} \\ { m ooo} \end{array}$
0000000	oooooo	00000	

Def: The node cop-win reliability of G, denoted NCRel(G, p), of is the probability that the operational nodes induce a cop-win graph.

Intro	Unicyclic	Bicyclic	Conclusion
0000000	oooooo	00000	000

Def: The node cop-win reliability of G, denoted NCRel(G, p), of is the probability that the operational nodes induce a cop-win graph.

If $W_i(G)$ is number of induced order *i* cop-win subgraphs, then

NCRel
$$(G, p) = \sum_{i=1}^{n} W_i(G)(1-p)^{n-i}p^i.$$

Intro	Unicyclic	Bicyclic	Conclusion
0000000	000000	00000	000

Def: The node cop-win reliability of G, denoted NCRel(G, p), of is the probability that the operational nodes induce a cop-win graph.

If $W_i(G)$ is number of induced order *i* cop-win subgraphs, then

NCRel
$$(G, p) = \sum_{i=1}^{n} W_i(G)(1-p)^{n-i}p^i.$$

Def: A graph $G \in \mathcal{G}$ is uniformly most reliable (UMR) in \mathcal{G} if NCRel $(G, p) \geq$ NCRel(H, p) for all $p \in [0, 1]$ and $H \in \mathcal{G}$.

Intro	Unicyclic	Bicyclic	Conclusion
0000000	000000	00000	000

Def: The node cop-win reliability of G, denoted NCRel(G, p), of is the probability that the operational nodes induce a cop-win graph.

If $W_i(G)$ is number of induced order *i* cop-win subgraphs, then

NCRel
$$(G, p) = \sum_{i=1}^{n} W_i(G)(1-p)^{n-i}p^i.$$

Def: A graph $G \in \mathcal{G}$ is uniformly most reliable (UMR) in \mathcal{G} if $\operatorname{NCRel}(G, p) \geq \operatorname{NCRel}(H, p)$ for all $p \in [0, 1]$ and $H \in \mathcal{G}$.

We can now compare graphs by how cop-win they are!

Intro	
00000000	0

Bicyclic 00000

Figure: $\text{NCRel}(P_n, p)$ for $3 \le n \le 11$.

Intro	
00000000	0

Bicyclic 00000

Figure: NCRel (C_n, p) for $4 \le n \le 12$.

Intro	Unicyclic	Bicyclic	Conclusion
00000000	000000	00000	000

- The node reliability (Stivaros 1990) of G, denoted $\operatorname{NRel}(G, p)$, of is the probability that the operational nodes induce a connected graph.
- Let $S_i(G)$ denote the number of order *i* connected induced subgraphs.

Intro	Unicyclic	Bicyclic	Conclusion
00000000	000000	ooooo	000

- The node reliability (Stivaros 1990) of G, denoted $\operatorname{NRel}(G, p)$, of is the probability that the operational nodes induce a connected graph.
- Let $S_i(G)$ denote the number of order *i* connected induced subgraphs.

• For $i \leq 3$, $W_i(G) = S_i(G)$ and for i > 4 $W_i(G) \leq S_i(G)$ for all graphs G.

Intro	Unicyclic	Bicyclic	Conclusion
00000000	000000	00000	000

- The node reliability (Stivaros 1990) of G, denoted $\operatorname{NRel}(G, p)$, of is the probability that the operational nodes induce a connected graph.
- Let $S_i(G)$ denote the number of order *i* connected induced subgraphs.

- For $i \leq 3$, $W_i(G) = S_i(G)$ and for i > 4 $W_i(G) \leq S_i(G)$ for all graphs G.
- $\operatorname{NCRel}(G, p) \leq \operatorname{NRel}(G, p)$ for all graphs G.

Intro	Unicyclic	Bicyclic	Conclusion
00000000	oooooo	ooooo	000

- The node reliability (Stivaros 1990) of G, denoted $\operatorname{NRel}(G, p)$, of is the probability that the operational nodes induce a connected graph.
- Let $S_i(G)$ denote the number of order *i* connected induced subgraphs.

- For $i \leq 3$, $W_i(G) = S_i(G)$ and for i > 4 $W_i(G) \leq S_i(G)$ for all graphs G.
- $\operatorname{NCRel}(G, p) \leq \operatorname{NRel}(G, p)$ for all graphs G.
- $\operatorname{NCRel}(G, p) = \operatorname{NRel}(G, p)$ if and only if G is chordal.

Intro	Unicyclic	Bicyclic	Conclusion
00000000	000000	00000	000

- The node reliability (Stivaros 1990) of G, denoted $\operatorname{NRel}(G, p)$, of is the probability that the operational nodes induce a connected graph.
- Let $S_i(G)$ denote the number of order *i* connected induced subgraphs.

- For $i \leq 3$, $W_i(G) = S_i(G)$ and for i > 4 $W_i(G) \leq S_i(G)$ for all graphs G.
- $\operatorname{NCRel}(G, p) \leq \operatorname{NRel}(G, p)$ for all graphs G.
- $\operatorname{NCRel}(G, p) = \operatorname{NRel}(G, p)$ if and only if G is chordal. item If $G \in \mathcal{G}$ is chordal and $\operatorname{NRel}(G, p) \geq \operatorname{NRel}(H, p)$ for all $p \in [0, 1]$ and $H \in \mathcal{G}$, then G is UMR in \mathcal{G} .

Intro
0000000

• The connected set polynomial of G, denoted CS(G, x), is defined by

$$\operatorname{CS}(G, x) = \sum_{k=1}^{n} S_k(G) x^k.$$

Intro	Unicyclic	Bicyclic	$\begin{array}{c} \text{Conclusion} \\ \text{000} \end{array}$
0000000●	000000	00000	

• The connected set polynomial of G, denoted CS(G, x), is defined by

$$\mathrm{CS}(G, x) = \sum_{k=1}^{n} S_k(G) x^k.$$

• The cop-win polynomial of G, denoted CW(G, x), is defined by

$$CW(G, x) = \sum_{k=1}^{n} W_k(G) x^k.$$

intro	Unicyclic	Bicyclic	$\begin{array}{c} \text{Conclusion} \\ \text{ooo} \end{array}$
0000000	000000	00000	

• The connected set polynomial of G, denoted CS(G, x), is defined by

$$\operatorname{CS}(G, x) = \sum_{k=1}^{n} S_k(G) x^k.$$

• The cop-win polynomial of G, denoted CW(G, x), is defined by

$$CW(G, x) = \sum_{k=1}^{n} W_k(G) x^k.$$

• For polynomials p(x) and q(x), if p(x) is coefficient-wise greater than or equal to q(x), we write $q(x) \leq p(x)$.

ntro	Unicyclic	Bicyclic	Conclusion
0000000●	000000	00000	000

• The connected set polynomial of G, denoted CS(G, x), is defined by

$$\operatorname{CS}(G, x) = \sum_{k=1}^{n} S_k(G) x^k.$$

• The cop-win polynomial of G, denoted CW(G, x), is defined by

$$CW(G, x) = \sum_{k=1}^{n} W_k(G) x^k.$$

- For polynomials p(x) and q(x), if p(x) is coefficient-wise greater than or equal to q(x), we write $q(x) \preceq p(x)$.
- For $G \in \mathcal{G}$, if $CW(H, x) \preceq CW(G, x)$ for all $H \in \mathcal{G}$, then G is UMR in \mathcal{G} .

intro	Unicyclic	Bicyclic	$\begin{array}{c} {\rm Conclusion} \\ {\rm 000} \end{array}$
20000000	000000	00000	

• The connected set polynomial of G, denoted CS(G, x), is defined by

$$\mathrm{CS}(G, x) = \sum_{k=1}^{n} S_k(G) x^k.$$

• The cop-win polynomial of G, denoted CW(G, x), is defined by

$$CW(G, x) = \sum_{k=1}^{n} W_k(G) x^k.$$

- For polynomials p(x) and q(x), if p(x) is coefficient-wise greater than or equal to q(x), we write $q(x) \leq p(x)$.
- For $G \in \mathcal{G}$, if $CW(H, x) \preceq CW(G, x)$ for all $H \in \mathcal{G}$, then G is UMR in \mathcal{G} .

Question: Which families of graphs is it of interest to find UMR graph(s)?

1 Intro

Intro	Unicyclic	Bicyclic	Conclusion
0000000	o●oooo	00000	000

Intro	Unicyclic	Bicyclic	Conclusion
00000000	o●oooo	00000	000

- Let \mathcal{U}_n denote the family of all unicyclic graphs of order n (connected simple graphs with n edges).
- Known that $K_{1,n-1}$ is UMR for trees (Stivaros 1990). Unicyclic graphs next smallest interesting case.

Intro	Unicyclic	Bicyclic	Conclusion
00000000	o●oooo	00000	000

- Let \mathcal{U}_n denote the family of all unicyclic graphs of order n (connected simple graphs with n edges).
- Known that $K_{1,n-1}$ is UMR for trees (Stivaros 1990). Unicyclic graphs next smallest interesting case.
- UMR graphs with respect to node reliability do not exist in U_n (Stivaros 1990).

	Unicyclic	Bicyclic	Conclusion
0000000	00000		

Question: Do you think there is a UMR graph in U_n ?

Intro	Unicyclic	Bicyclic	Conclusion
00000000	000000	00000	000

Question: Do you think there is a UMR graph in U_n ?

Question: If yes to prev. question, what graph do you think it is?

Unicyclic	Bicyclic	Conclusion
00000		

Question: Do you think there is a UMR graph in U_n ?

Question: If yes to prev. question, what graph do you think it is?

From computations, there is either no UMR graph or it is between U_n and C_n .

Figure: U_n .

Figure: Plots of $NCRel(U_4, p)$ and $NCRel(C_4, p)$.

Lemma (Ahmed-C. 2022) $CW(H, x) \preceq CW(U_n, x)$ for all $H \in \mathcal{U}_n \setminus \{C_n\}$ and $n \ge 5$.

Lemma (Ahmed-C. 2022) $CW(H, x) \preceq CW(U_n, x)$ for all $H \in \mathcal{U}_n \setminus \{C_n\}$ and $n \ge 5$.

Lemma (Ahmed-C. 2022): If $v \in V(G)$ and $u \in V(H)$ such that

1)
$$\operatorname{CS}(G-v,x) \preceq \operatorname{CS}(H-u,x),$$

2)
$$\operatorname{CS}(G/v, x) \preceq \operatorname{CS}(H/u, x)$$
, and

3)
$$\operatorname{CS}(H - N[u], x) \preceq \operatorname{CS}(G - N[v], x),$$

then $CS(G, x) \preceq CS(H, x)$.

Intro 00000000

Issue: $\operatorname{CW}(C_n, x) \not\preceq \operatorname{CW}(U_n, x)$ since $W_{n-1}(C_n) = n > W_{n-1}(U_n) = n - 1.$

Issue: Exciting Opportunity: $\operatorname{CW}(C_n, x) \not\preceq \operatorname{CW}(U_n, x)$ since $W_{n-1}(C_n) = n > W_{n-1}(U_n) = n - 1.$

Issue: Exciting Opportunity: $\operatorname{CW}(C_n, x) \not\preceq \operatorname{CW}(U_n, x)$ since $W_{n-1}(C_n) = n > W_{n-1}(U_n) = n - 1.$

Lemma (Ahmed-C. 2022): For $n \ge 5$, NCRel (U_n, p) > NCRel (C_n, p) for all $p \in (0, 1]$ Issue:Exciting Opportunity: $\operatorname{CW}(C_n, x) \not\preceq \operatorname{CW}(U_n, x)$ since $W_{n-1}(C_n) = n > W_{n-1}(U_n) = n - 1.$

Lemma (Ahmed-C. 2022): For $n \ge 5$, NCRel (U_n, p) > NCRel (C_n, p) for all $p \in (0, 1]$

Proof Sketch:

• Result follows if $\text{NCRel}(U_n, p) - \text{NCRel}(C_n, p)$ has no roots in (0, 1].

Issue:Exciting Opportunity: $\operatorname{CW}(C_n, x) \not\preceq \operatorname{CW}(U_n, x)$ since $W_{n-1}(C_n) = n > W_{n-1}(U_n) = n - 1.$

Lemma (Ahmed-C. 2022): For $n \ge 5$, NCRel (U_n, p) > NCRel (C_n, p) for all $p \in (0, 1]$

Proof Sketch:

- Result follows if $\text{NCRel}(U_n, p) \text{NCRel}(C_n, p)$ has no roots in (0, 1].
- This happens if and only if $CW(U_n, x) CW(C_n, x)$ has no positive real roots.

Issue:Exciting Opportunity: $\operatorname{CW}(C_n, x) \not\preceq \operatorname{CW}(U_n, x)$ since $W_{n-1}(C_n) = n > W_{n-1}(U_n) = n - 1.$

Lemma (Ahmed-C. 2022): For $n \ge 5$, NCRel (U_n, p) > NCRel (C_n, p) for all $p \in (0, 1]$

Proof Sketch:

- Result follows if $\text{NCRel}(U_n, p) \text{NCRel}(C_n, p)$ has no roots in (0, 1].
- This happens if and only if $CW(U_n, x) CW(C_n, x)$ has no positive real roots.
- Use more analytic techniques to show that $CW(U_n, x) CW(C_n, x)$ has no positive real roots.

Issue: Exciting Opportunity: $\operatorname{CW}(C_n, x) \not\preceq \operatorname{CW}(U_n, x)$ since $W_{n-1}(C_n) = n > W_{n-1}(U_n) = n - 1.$

Lemma (Ahmed-C. 2022): For $n \ge 5$, NCRel (U_n, p) > NCRel (C_n, p) for all $p \in (0, 1]$

Proof Sketch:

- Result follows if $\text{NCRel}(U_n, p) \text{NCRel}(C_n, p)$ has no roots in (0, 1].
- This happens if and only if $CW(U_n, x) CW(C_n, x)$ has no positive real roots.
- Use more analytic techniques to show that $CW(U_n, x) CW(C_n, x)$ has no positive real roots.

Theorem (Ahmed-C. 2022): For all $n \ge 5 U_n$ is UMR in \mathcal{U}_n .

Intro	Unicyclic	Bicyclic	$\begin{array}{c} \text{Conclusion} \\ \text{ooo} \end{array}$
0000000	000000	●0000	

1 Intro

ntro	Unicyclic	Bicyclic	$\begin{array}{c} \operatorname{Conclusion} \\ \operatorname{ooo} \end{array}$
20000000	000000	o●ooo	

Intro	Unicyclic	Bicyclic	Conclusion
00000000	000000	o●ooo	

Question: Do you think there is a UMR graph in \mathcal{B}_n ?

Intro	Unicyclic	Bicyclic	Conclusion
00000000	000000	oeooo	000

Question: Do you think there is a UMR graph in \mathcal{B}_n ?

Question: If yes to prev. question, what graph do you think it is?

Intro	Unicyclic	Bicyclic	Conclusion
00000000	oooooo	o●ooo	000

Question: Do you think there is a UMR graph in \mathcal{B}_n ?

Question: If yes to prev. question, what graph do you think it is?

Figure: NCRel(G, p) for all $G \in \mathcal{B}_5$.

Theorem (Ahmed-C. 2022): For all $n \ge 7$, $CW(H,x) \preceq CW(B_n,x)$ for all $H \in \mathcal{B}_n$, therefore B_n is UMR in \mathcal{B}_n .

Figure: The bicyclic graphs $G_1(a, b)$, $G_2(a, b, c)$, and $G_3(a, b, c)$

1 Intro

Conjecture (Ahmed-C. 2022): For all $n \ge 2(m+1) + 1$, $H_{n,m}$ is UMR in the family of *m*-cyclic graphs.

Figure: The graph $H_{n,m}$.

Unicyclic 000000

Conjecture (Ahmed-C. 2022): For all $n \ge 2(m+1) + 1$, $H_{n,m}$ is UMR in the family of *m*-cyclic graphs.

Figure: The graph $H_{n,m}$.

Question: Let \mathcal{T}_n be the set of all 2-cop-win graphs of order n. Is there are UMR graph in \mathcal{T}_n ? If so, which one?

Unicyclic 000000

Conjecture (Ahmed-C. 2022): For all $n \ge 2(m+1) + 1$, $H_{n,m}$ is UMR in the family of *m*-cyclic graphs.

Figure: The graph $H_{n,m}$.

Question: Let \mathcal{T}_n be the set of all 2-cop-win graphs of order n. Is there are UMR graph in \mathcal{T}_n ? If so, which one?

Open Problem: Consider edge cop-win reliability.

Intro 00000000 Unicyclia 000000 Bicyclic 00000 $\begin{array}{c} \operatorname{Conclusion} \\ \circ \circ \bullet \end{array}$

THANK YOU!

Figure: Scan QR code for the paper.