The largest real root of the independence polynomial of a unicyclic graph

Ben Cameron

University of Guelph/The King's University

ben.cameron@kingsu.ca

(Joint work with Iain Beaton)

May 28, 2021

The independence polynomial of a graph G, denoted I(G, x), is the generating polynomial for the number of independent sets of G of each order.

$$I(G, x) = \sum_{k=0}^{\alpha(G)} i_k^G x^k.$$

 $(i_k^G$ denotes the number of independent sets of order k, $\alpha(G)$ denotes the independence number)

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000		00000000	

$$I(G, x) = I(G - v, x) + x \cdot I(G - N[v], x).$$

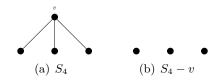
Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000		00000000	

$$I(G, x) = I(G - v, x) + x \cdot I(G - N[v], x).$$

$$I(S_4, x) =$$

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000		00000000	

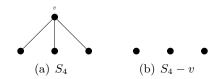
$$I(G, x) = I(G - v, x) + x \cdot I(G - N[v], x).$$



 $I(S_4, x) = (1+x)^3 +$

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000		00000000	

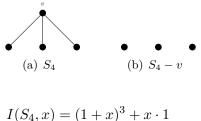
$$I(G, x) = I(G - v, x) + x \cdot I(G - N[v], x).$$



 $I(S_4, x) = (1+x)^3 + x \cdot 1$

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000		00000000	

$$I(G, x) = I(G - v, x) + x \cdot I(G - N[v], x).$$



$$= 1 + 4x + 3x^2 + x^3$$

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000				

The roots of I(G, x) are called the independence roots of G.

Figure: Independence roots of all graphs on $n \leq 8$ vertices.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000				

The roots of I(G, x) are called the independence roots of G.

Figure: Independence roots of all graphs on $n \leq 8$ vertices.

Theorem (Brown-Hickman-Nowakowski 2004): The set of all independence roots is dense in \mathbb{C} .

Intro Largest Real Roots Unicycl	lic Graphs Well-Covered Unicycl	lic Graphs Conclusion
000 •00 00		

Intro Largest Real Roots Unicy	clic Graphs Well-Covered Unicyclic Gra	aphs Conclusion
000 •00 00		

Theorem (Fisher-Solow 1990, Goldwurm-Santini 2000, Csikvári 2013): For every graph G, $\beta(G)$ is unique and real.

Intro Largest Real Roots Unicy	clic Graphs Well-Covered Unicyclic Gra	aphs Conclusion
000 •00 00		

Theorem (Fisher-Solow 1990, Goldwurm-Santini 2000, Csikvári 2013): For every graph G, $\beta(G)$ is unique and real.

Therefore, smallest modulus root is largest real root.

Intro Largest Real Roots Unicy	clic Graphs Well-Covered Unicyclic Gra	aphs Conclusion
000 •00 00		

Theorem (Fisher-Solow 1990, Goldwurm-Santini 2000, Csikvári 2013): For every graph G, $\beta(G)$ is unique and real.

Therefore, smallest modulus root is largest real root.

Theorem (Csikvári 2013): $\beta(P_n) \leq \beta(T) \leq \beta(S_n)$ for all trees T of order n.

000 000 00 0000000 00	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
	•00			

Theorem (Fisher-Solow 1990, Goldwurm-Santini 2000, Csikvári 2013): For every graph G, $\beta(G)$ is unique and real.

Therefore, smallest modulus root is largest real root.

Theorem (Csikvári 2013): $\beta(P_n) \leq \beta(T) \leq \beta(S_n)$ for all trees T of order n.

Corollary: $\beta(P_n) \leq \beta(G) \leq \beta(K_n)$ for all graphs G of order n.

000 000 00 0000000 00	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
	•00			

Theorem (Fisher-Solow 1990, Goldwurm-Santini 2000, Csikvári 2013): For every graph G, $\beta(G)$ is unique and real.

Therefore, smallest modulus root is largest real root.

Theorem (Csikvári 2013): $\beta(P_n) \leq \beta(T) \leq \beta(S_n)$ for all trees T of order n.

Corollary: $\beta(P_n) \leq \beta(G) \leq \beta(K_n)$ for all graphs G of order n.

Bounds on β are open for all other families of graphs.

Intro Largest Real Roo	ots Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000 000			

Definition (Csikvári 2013):

 $H \preceq G$ if and only if $I(H, x) \ge I(G, x)$ for all $x \in [\beta(G), 0]$.

Intro Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000 000			

Definition (Csikvári 2013):

 $H \preceq G$ if and only if $I(H, x) \ge I(G, x)$ for all $x \in [\beta(G), 0]$.

Proposition (Csikvári 2013)

- 1) \leq is transitive.
- 2) If $H \leq G$, then $\beta(H) \leq \beta(G)$.
- 3) If H is a subgraph of G, then $H \preceq G$.

Intro Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000 000			

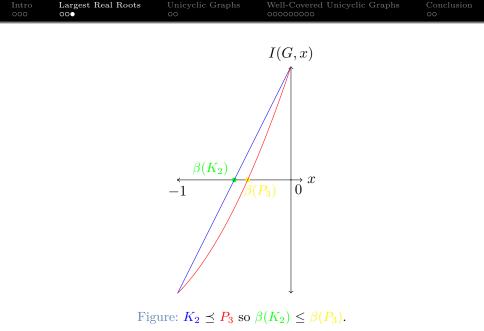
Definition (Csikvári 2013):

 $H \preceq G$ if and only if $I(H, x) \ge I(G, x)$ for all $x \in [\beta(G), 0]$.

Proposition (Csikvári 2013)

- 1) \leq is transitive.
- 2) If $H \leq G$, then $\beta(H) \leq \beta(G)$.
- 3) If H is a subgraph of G, then $H \preceq G$.

Theorem (Csikvári 2013) If T is a tree of order n, then $P_n \preceq T \preceq S_n$.



Intro 000	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
	000	●0	000000000	00

Question (Oboudi 2018): What are the maximal and minimal elements with respect to \leq among the family of connected unicyclic graphs?

Intro 000		Conclusion 00

Question (Oboudi 2018): What are the maximal and minimal elements with respect to \leq among the family of connected unicyclic graphs?

Theorem (Oboudi 2018): Let G and H be graphs with $u \in V(G), e \in E(G), v \in V(H)$, and $f \in E(H)$. Then the following hold:

(i) If $H - v \leq G - u$ and $G - N[u] \leq H - N[v]$, then $H \leq G$.

(*ii*) If $H - f \leq G - e$ and $G - N[e] \leq H - N[f]$, then $H \leq G$.

Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
	0•		

Theorem (Beaton-C. 2020+): If G is a connected unicyclic graph of order n, then $C_n \preceq G \preceq U_n$.

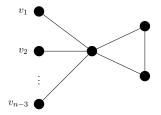


Figure: The graph U_n

Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
	00		

Theorem (Beaton-C. 2020+): If G is a connected unicyclic graph of order n, then $C_n \preceq G \preceq U_n$.

Corollary: If G is a connected unicyclic graph of order n, then

 $\beta(C_n) \le \beta(G) \le \beta(U_n).$

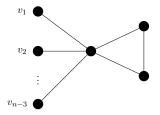


Figure: The graph U_n

000 000 00 00 0000000 00	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
			0000000	

Definition: A graph on n vertices is well-covered if all of its maximal independent sets have the same order.

Intro L	Largest Real Roots U	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
			•0000000	

Definition: A graph on n vertices is well-covered if all of its maximal independent sets have the same order.

Theorem (Brown-C. 2020): Among all graphs of order n, the maximum modulus of an independence root is $O(3^{\frac{n}{3}})$.

Theorem (Brown-C. 2020): Among all trees of order n, the maximum modulus of an independence root is $O(2^{\frac{n}{2}})$.

Intro L	Largest Real Roots U	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
			•0000000	

Definition: A graph on n vertices is well-covered if all of its maximal independent sets have the same order.

Theorem (Brown-C. 2020): Among all graphs of order n, the maximum modulus of an independence root is $O(3^{\frac{n}{3}})$.

Theorem (Brown-C. 2020): Among all trees of order n, the maximum modulus of an independence root is $O(2^{\frac{n}{2}})$.

Theorem (Brown-Nowakowski. 2001): Among all well-covered graphs of order n, the maximum modulus of an independence root is less than n.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	o●ooooooo	00
Grap	oh Star Opera	ation		

Figure: G.

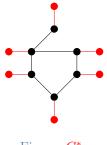


Figure: G^* .

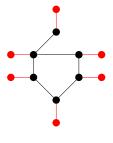


Figure: G^* .

Theorem (Topp-Volkmann 1990): G^* is well-covered for all graphs G.

Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
		0000000	

Theorem (Finbow-Hartnell-Nowakowski 1993): If $G \neq K_1$ and $G \neq C_7$ and girth $(G) \geq 6$, then G is well-covered if and only if $G = H^*$.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	00●000000	00

Theorem (Finbow-Hartnell-Nowakowski 1993): If $G \neq K_1$ and $G \neq C_7$ and girth $(G) \geq 6$, then G is well-covered if and only if $G = H^*$.

Lemma (Beaton-C. 2020+): Let G and H be graphs of order n. Then $H \preceq G$ if and only if $H^* \preceq G^*$.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	00●000000	00

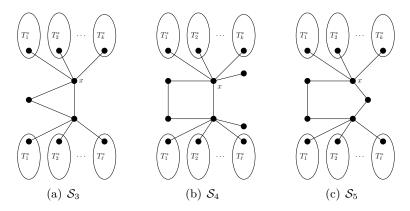
Theorem (Finbow-Hartnell-Nowakowski 1993): If $G \neq K_1$ and $G \neq C_7$ and girth $(G) \geq 6$, then G is well-covered if and only if $G = H^*$.

Lemma (Beaton-C. 2020+): Let G and H be graphs of order n. Then $H \preceq G$ if and only if $H^* \preceq G^*$.

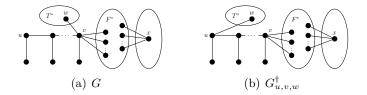
Corollary: If T is a well-covered tree of order 2n, then $P_n^* \leq T \leq S_n^*$.

Theorem (Topp-Volkmann 1990): A graph G is a connected well-covered unicyclic graph if and only if

$G \in \{C_3, C_4, C_5, C_7\} \cup \mathcal{S}_3 \cup \mathcal{S}_4 \cup \mathcal{S}_5 \cup \mathcal{KU}.$



Note: All graphs in S_3 and S_5 have odd order while all graphs in S_4 and \mathcal{KU} have even order by definition.



Lemma (Beaton-C. 2020+) If G is a graph as above, then $G_{u,v,w}^{\dagger} \preceq G$.

Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
		000000000	

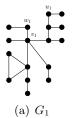
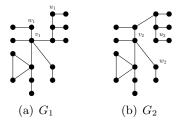
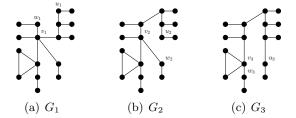


Figure: Graph sequence formed by successive dagger operations.

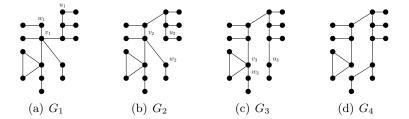
Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
		000000000	



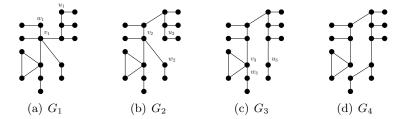
Intro	Largest Real Roots	Unicyclic Graphs	Conclusion
000	000	00	00



Intro 000	Largest Real Roots 000	5	Conclusion 00



Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000000	00

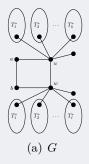


Lemma (Beaton-C. 2020+): "This" works in general.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	oooooo●oo	00
Even	Order			

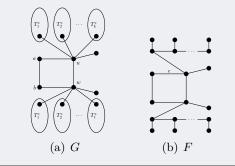
Intro 000	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
	000	00	000000000	00
Even	Order			

Proof sketch lower bound.: If $G \in \mathcal{KU}$ done. Else, $G \in \mathcal{S}_4$.



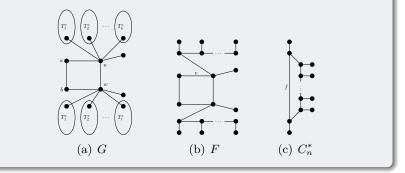
Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000€00	00
Even	Order			

Proof sketch lower bound.: If $G \in \mathcal{KU}$ done. Else, $G \in \mathcal{S}_4$.



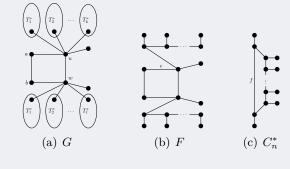
Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000€00	00
Even	Order			

Proof sketch lower bound.: If $G \in \mathcal{KU}$ done. Else, $G \in \mathcal{S}_4$.



Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000●00	00
Even	Order			

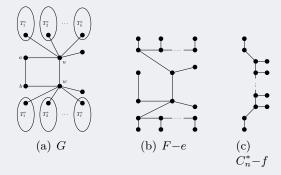
Proof sketch lower bound.: If $G \in \mathcal{KU}$ done. Else, $G \in \mathcal{S}_4$.



If $H - f \leq G - e$ and $G - N[e] \leq H - N[f]$, then $H \leq G$.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000●00	00
Even	Order			

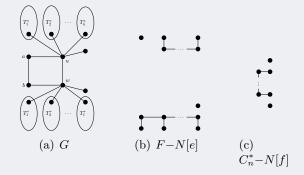
Proof sketch lower bound.: If $G \in \mathcal{KU}$ done. Else, $G \in \mathcal{S}_4$.



If $H - f \leq G - e$ and $G - N[e] \leq H - N[f]$, then $H \leq G$.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000€00	00
Even	Order			

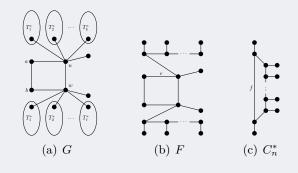
Proof sketch lower bound.: If $G \in \mathcal{KU}$ done. Else, $G \in \mathcal{S}_4$.



If $H - f \leq G - e$ and $G - N[e] \leq H - N[f]$, then $H \leq G$.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000€00	00
Even	Order			

Proof sketch lower bound.: If $G \in \mathcal{KU}$ done. Else, $G \in \mathcal{S}_4$.



So $G \succeq F \succeq C_n^*$.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	0000000€0	00
Odd	Order			

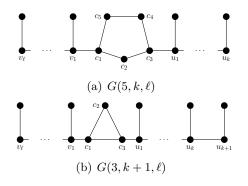


Figure: Graphs in the family S_P .

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	0000000€0	00
Odd	Order			

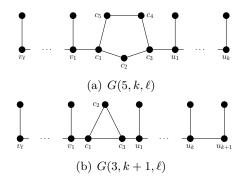


Figure: Graphs in the family S_P .

Lemma (Beaton-C. 2020+) If $G, H \in S_P$ and have the same order, then I(G, x) = I(H, x).

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	00000000●	00
Odd	Order			

Theorem (Beaton-C. 2020+) Let G be a connected well-covered unicyclic graph of odd order n and $H_n \in S_P$ of order n. Then

i)
$$C_n \preceq G \preceq M_n$$
 if $n \leq 7$, and

ii)
$$H_n \preceq G \preceq M_n$$
 if $n \ge 9$.

Figure: The graph M_n .

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	00000000●	00
Odd	Order			

Theorem (Beaton-C. 2020+) Let G be a connected well-covered unicyclic graph of odd order n and $H_n \in S_P$ of order n. Then

i)
$$C_n \preceq G \preceq M_n$$
 if $n \leq 7$, and

ii) $H_n \preceq G \preceq M_n$ if $n \ge 9$.

Corollary (Beaton-C. 2020+) Let G be a connected well-covered unicyclic graph of odd order n and $H_n \in S_P$ of order n. Then i) $\beta(C_n) \leq \beta(G) \leq \beta(M_n)$ if $n \leq 7$, and ii) $\beta(H_n) \leq \beta(G) \leq \beta(M_n)$ if $n \geq 9$.

Figure: The graph M_n .

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000000	$\bullet 0$
Ope	n Problems			

Question: What are the maximum and minimum graphs with respect to \leq among *c*-cyclic graphs for $c \geq 2$?

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000000	●0
Ope	n Problems			

Question: What are the maximum and minimum graphs with respect to \leq among *c*-cyclic graphs for $c \geq 2$?

Theorem (Beaton-C. 2020+): If G is a bipartite graph of order n, then $P_n \leq G \leq K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}$.

Intro	Largest Real Roots	Unicyclic Graphs	Well-Covered Unicyclic Graphs	Conclusion
000	000	00	000000000	●0
Ope	n Problems			

Question: What are the maximum and minimum graphs with respect to \leq among *c*-cyclic graphs for $c \geq 2$?

Theorem (Beaton-C. 2020+): If G is a bipartite graph of order n, then $P_n \leq G \leq K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}$.

Conjecture: If G is a triangle-free graph of order n, then $P_n \preceq G \preceq K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}.$

Unicyclic Graphs

Well-Covered Unicyclic Graphs 000000000 Conclusion $0 \bullet$

THANK YOU!

