The mean subtree order of a graph under edge addition

Ben Cameron

University of Guelph

ben.cameron@uoguelph.ca

(Joint work with Lucas Mol)

CMS Winter Meeting

December 4, 2020

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a not necessarily induced subgraph that is a tree.

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a not necessarily induced subgraph that is a tree.
- For a multigraph *G*, the *mean subtree order* of *G*, denoted $\mu(G)$, is the average order of a subtree of *G*.

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a not necessarily induced subgraph that is a tree.
- For a multigraph *G*, the *mean subtree order* of *G*, denoted $\mu(G)$, is the average order of a subtree of *G*.

$$
\mu(C_4) =
$$

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a not necessarily induced subgraph that is a tree.
- For a multigraph *G*, the *mean subtree order* of *G*, denoted $\mu(G)$, is the average order of a subtree of *G*.

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a not necessarily induced subgraph that is a tree.
- For a multigraph *G*, the *mean subtree order* of *G*, denoted $\mu(G)$, is the average order of a subtree of *G*.

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a not necessarily induced subgraph that is a tree.
- For a multigraph *G*, the *mean subtree order* of *G*, denoted $\mu(G)$, is the average order of a subtree of *G*.

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a not necessarily induced subgraph that is a tree.
- For a multigraph *G*, the *mean subtree order* of *G*, denoted $\mu(G)$, is the average order of a subtree of *G*.

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a not necessarily induced subgraph that is a tree.
- For a multigraph *G*, the *mean subtree order* of *G*, denoted $\mu(G)$, is the average order of a subtree of *G*.

• The subtree polynomial of G is
$$
S_G(x) = \sum_{T \in \mathcal{T}_G} x^{|V(T)|}
$$
.

• The subtree polynomial of G is
$$
S_G(x) = \sum_{T \in \mathcal{T}_G} x^{|V(T)|}
$$
.

 $S_{C_4}(x) = 4x + 4x^2 + 4x^3 + 4x^4$

• The subtree polynomial of G is
$$
S_G(x) = \sum_{T \in \mathcal{T}_G} x^{|V(T)|}
$$
.

Let \mathcal{T}_G be the set of subtrees of *G*. Let $\mathcal{T}_{G,p}$ be the set of subtrees of *G* containing *p* (vertex or edge).

- The *subtree polynomial* of *G* is $S_G(x) = \sum$ $T{\in}\mathcal{T}_G$ $x^{|V(T)|}$.
- The *local subtree polynomial* of *G* at *p* is $S_{G,p}(x) = \sum$ $T{\in}\mathcal{T}_{G,p}$ $x^{|V(T)|}$

Let \mathcal{T}_G be the set of subtrees of *G*. Let $\mathcal{T}_{G,p}$ be the set of subtrees of *G* containing *p* (vertex or edge).

- The *subtree polynomial* of *G* is $S_G(x) = \sum$ $T{\in}\mathcal{T}_G$ $x^{|V(T)|}$.
- The *local subtree polynomial* of *G* at *p* is $S_{G,p}(x) = \sum$ $T{\in}\mathcal{T}_{G,p}$ $x^{|V(T)|}$

Let \mathcal{T}_G be the set of subtrees of *G*. Let $\mathcal{T}_{G,p}$ be the set of subtrees of *G* containing *p* (vertex or edge).

- The *subtree polynomial* of *G* is $S_G(x) = \sum$ $T{\in}\mathcal{T}_G$ $x^{|V(T)|}$.
- The *local subtree polynomial* of *G* at *p* is $S_{G,p}(x) = \sum$ $T{\in}\mathcal{T}_{G,p}$ $x^{|V(T)|}$
- The *local mean subtree order* of *G* at *p*, $\mu(G, p)$, is the average order of a subtree of *G* containing *p*.

$$
\bullet \ S_G(x) = S_{G,p}(x) + S_{G-p}(x)
$$

$$
\bullet \ \ S_G(x)=S_{G,p}(x)+S_{G-p}(x)
$$

• $\mu(G)$ is a weighted average of $\mu(G, p)$ and $\mu(G - p)$

$$
\bullet \ \ S_G(x)=S_{G,p}(x)+S_{G-p}(x)
$$

• $\mu(G)$ is a weighted average of $\mu(G, p)$ and $\mu(G - p)$ More precisely,

$$
\mu(G) = \frac{S_{G,p}(1)}{S_G(1)} \mu(G, p) + \frac{S_{G-p}(1)}{S_G(1)} \mu(G - p).
$$

$$
\bullet \ \ S_G(x)=S_{G,p}(x)+S_{G-p}(x)
$$

• $\mu(G)$ is a weighted average of $\mu(G, p)$ and $\mu(G - p)$ More precisely,

$$
\mu(G) = \frac{S_{G,p}(1)}{S_G(1)} \mu(G, p) + \frac{S_{G-p}(1)}{S_G(1)} \mu(G - p).
$$

In the 1980s, Jamison initiated the study of subtrees of trees.

Naive Conjecture: The tree of order *n* with maximum mean subtree order is $K_{1,n-1}$.

Naive Conjecture: The tree of order *n* with maximum mean subtree order is $K_{1,n-1}$.

Naive Conjecture: The tree of order *n* with maximum mean subtree order is $K_{1,n-1}$.

Order 4:

Naive Conjecture: The tree of order *n* with maximum mean subtree order is $K_{1,n-1}$.

Order 5:

Naive Conjecture: The tree of order *n* with maximum mean subtree order is $K_{1,n-1}$.

Order 6:

Naive Conjecture: The tree of order *n* with maximum mean subtree order is $K_{1,n-1}$.

Order 7:

Naive Conjecture: The tree of order *n* with maximum mean subtree order is $K_{1,n-1}$.

Order 8:

Conjecture: The tree of order *n* with maximum subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 9:

onjecture: The tree of order *n* with maximu subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 10:

iecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 11:

onjecture: The tree of order *n* with maximu subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order *n* with maximum mean subtree order is a caterpillar.

Order 12:

iecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 13:

onjecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order *n* with maximum mean subtree order is a caterpillar.

Order 14:

onjecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 15:

iecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 16:

iecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 17:

onjecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 18:

iecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 19:

nature: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 20:

iecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 21:

iecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 22:

iecture: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 23:

nature: The tree of order *n* with maxim subtree order is the star of order *n*.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 24:

In 2018, Chin, Gordon, MacPhee & Vincent extended the study of subtrees from trees to graphs by considering:

- The sutbree polynomial, $S_G(x)$ of graphs.
- The shape of the coefficient sequence of $S_G(x)$.
- The probability that a randomly chosen tree is spanning.
- The mean subtree order of a graph $G, \mu(G)$.

In 2018, Chin, Gordon, MacPhee & Vincent extended the study of subtrees from trees to graphs by considering:

- The sutbree polynomial, $S_G(x)$ of graphs.
- The shape of the coefficient sequence of $S_G(x)$.
- The probability that a randomly chosen tree is spanning.
- The mean subtree order of a graph $G, \mu(G)$.

Conjecture (Chin et al. 2018): Suppose that *G* is a connected multigraph, and that *H* is obtained from *G* by adding an edge between two distinct vertices of *G*. Then $\mu(G) < \mu(H)$.

In 2018, Chin, Gordon, MacPhee & Vincent extended the study of subtrees from trees to graphs by considering:

- The sutbree polynomial, $S_G(x)$ of graphs.
- The shape of the coefficient sequence of $S_G(x)$.
- The probability that a randomly chosen tree is spanning.
- The mean subtree order of a graph G , $\mu(G)$.

Conjecture (Chin et al. 2018): Suppose that *G* is a connected multigraph, and that *H* is obtained from *G* by adding an edge between two distinct vertices of *G*. Then $\mu(G) < \mu(H)$.

It would follow that P_n minimizes and K_n maximizes $\mu(G)$ among all connected graphs of order *n*.

Figure: *G*

Figure: *G*

$$
\bullet \ \mu(G+ab)-\mu(G) \approx -0.000588
$$

Figure: *G*

- $\mu(G + ab) \mu(G) \approx -0.000588$
- *G* is the smallest counterexample to the Conjecture and the unique counterexample of order 7.

Figure: *G*

- $\mu(G + ab) \mu(G) \approx -0.000588$
- *G* is the smallest counterexample to the Conjecture and the unique counterexample of order 7.
- 347 counterexamples of order 8!

Figure: $K_{2,n}$

Figure: $K_{2,n}$; H_n

• $\mu(K_{2,n}) > \mu(H_n)$ for all $n \geq 6$.

Figure: $K_{2,n}$; H_n

• $\mu(K_{2,n}) > \mu(H_n)$ for all $n \geq 6$. \bullet But, $\mu(K_{2,n}) - \mu(H_n) \to 0$ as $n \to \infty$.

Figure: $K_{2,n}$; H_n

- $\mu(K_{2,n}) > \mu(H_n)$ for all $n \geq 6$.
- But, $\mu(K_{2,n}) \mu(H_n) \to 0$ as $n \to \infty$.
- \bullet max{ $\mu(K_{2,n}) \mu(H_n) : n \geq 1$ ≈ 0.070067.

Figure: $K_{2,n}$; H_n

- $\mu(K_{2,n}) > \mu(H_n)$ for all $n \geq 6$.
- But, $\mu(K_{2,n}) \mu(H_n) \to 0$ as $n \to \infty$.
- \bullet max{ $\mu(K_{2,n}) \mu(H_n) : n \geq 1$ ≈ 0.070067.

Figure: K_{2n} ; H_n

- $\mu(K_{2,n}) > \mu(H_n)$ for all $n \geq 6$.
- \bullet But, $\mu(K_{2,n}) \mu(H_n) \to 0$ as $n \to \infty$.
- \bullet max{ $\mu(K_{2,n}) \mu(H_n) : n \geq 1$ ≈ 0.070067.

Maybe adding an edge cannot decrease $\mu(G)$ by too much?

Theorem (C.-Mol 2020): Adding an edge between two distinct, nonadjacent vertices of a connected graph can decrease the density by an amount arbitrarily close to 1*/*3.

Theorem (C.-Mol 2020): Adding an edge between two distinct, nonadjacent vertices of a connected graph can decrease the density by an amount arbitrarily close to 1*/*3.

Theorem (C.-Mol 2020): Adding an edge between two distinct, nonadjacent vertices of a connected graph can decrease the density by an amount arbitrarily close to 1*/*3.

Theorem (C.-Mol 2020): Adding an edge between two distinct, nonadjacent vertices of a connected graph can decrease the density by an amount arbitrarily close to 1*/*3.

Figure: T_n ; $G_n = T_n + e$

Show $\lim_{n \to \infty} \text{Den}(T_n) - \text{Den}(G_n) = \frac{1}{3}$.

$$
\lim_{n \to \infty} \text{Den}(T_n) - \text{Den}(G_n) = \frac{1}{3}.
$$

Proof Sketch cont.:
$$
\text{Den}(G_n) = \frac{S_{G_n,e}(1)}{S_{G_n}(1)} \text{Den}(G,e) + \frac{S_{T_n}(1)}{S_{G_n}(1)} \text{Den}(T_n)
$$

$$
\lim_{n \to \infty} \text{Den}(T_n) - \text{Den}(G_n) = \frac{1}{3}.
$$

Proof Sketch cont.: $\text{Den}(G_n) = \frac{S_{G_n,e}(1)}{S_{G_n}(1)} \text{Den}(G,e) + \frac{S_{T_n}(1)}{S_{G_n}(1)}$ $\frac{S_{T_n}(1)}{S_{G_n}(1)}$ Den (T_n) $\lim_{n\to\infty} \frac{S_{T_n}(1)}{S_{G_n}(1)}$ $\frac{S_{T_n}(1)}{S_{G_n}(1)} \leq \lim_{n \to \infty} \frac{n+n^2+2n^3+n^4}{\binom{n-4\log_2(n)}{2}n^4}$ $\frac{n+n^2+2n^3+n^4}{\binom{n-4\log_2(n)}{2}n^4}=0$

$$
\lim_{n \to \infty} \text{Den}(T_n) - \text{Den}(G_n) = \frac{1}{3}.
$$

$$
\bullet \lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n + n^2 + 2n^3 + n^4}{\binom{n - 4\log_2(n)}{2}n^4} = 0 \quad \text{so } \lim_{n \to \infty} \frac{S_{G_n, e}(1)}{S_{G_n}(1)} = 1
$$

$$
\lim_{n \to \infty} \text{Den}(T_n) - \text{Den}(G_n) = \frac{1}{3}.
$$

•
$$
\lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n + n^2 + 2n^3 + n^4}{\binom{n - 4\log_2(n)}{2}n^4} = 0
$$
 so
$$
\lim_{n \to \infty} \frac{S_{G_n, e}(1)}{S_{G_n}(1)} = 1
$$

•
$$
\mu(G, e) = \frac{2n - 2\log_2(n) + 2}{3}
$$

$$
\lim_{n \to \infty} \text{Den}(T_n) - \text{Den}(G_n) = \frac{1}{3}.
$$

•
$$
\lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n+n^2+2n^3+n^4}{\binom{n-4\log_2(n)}{2}n^4} = 0
$$
 so
$$
\lim_{n \to \infty} \frac{S_{G_n,e}(1)}{S_{G_n}(1)} = 1
$$

•
$$
\mu(G, e) = \frac{2n-2\log_2(n)+2}{3}
$$
 so
$$
\lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}
$$

$$
\lim_{n \to \infty} \text{Den}(T_n) - \text{Den}(G_n) = \frac{1}{3}.
$$

$$
\bullet \lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n + n^2 + 2n^3 + n^4}{\binom{n - 4\log_2(n)}{2}n^4} = 0 \quad \text{so} \lim_{n \to \infty} \frac{S_{G_n, e}(1)}{S_{G_n}(1)} = 1
$$

•
$$
\mu(G, e) = \frac{2n - 2\log_2(n) + 2}{3}
$$
 so $\lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}$

$$
\bullet \lim_{n \to \infty} \text{Den}(G_n) = \lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}
$$

$$
\lim_{n \to \infty} \text{Den}(T_n) - \text{Den}(G_n) = \frac{1}{3}.
$$

$$
\bullet \lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n + n^2 + 2n^3 + n^4}{\binom{n - 4\log_2(n)}{2}n^4} = 0 \quad \text{so} \lim_{n \to \infty} \frac{S_{G_n, e}(1)}{S_{G_n}(1)} = 1
$$

•
$$
\mu(G, e) = \frac{2n - 2\log_2(n) + 2}{3}
$$
 so $\lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}$

$$
\sup_{n \to \infty} \text{Den}(G_n) = \lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}
$$

$$
\sup_{n \to \infty} \text{Den}(T_n) > \lim_{n \to \infty} \left(\frac{n - 2\log_2(n) - 1}{n} \right) = 1 \text{ (Mol-Oellermann 2018)}
$$

Figure: T_n ; $G_n = T_n + e$

$$
\lim_{n \to \infty} \text{Den}(T_n) - \text{Den}(G_n) = \frac{1}{3}.
$$

Proof Sketch cont.: $\text{Den}(G_n) = \frac{S_{G_n,e}(1)}{S_{G_n}(1)} \text{Den}(G,e) + \frac{S_{T_n}(1)}{S_{G_n}(1)}$ $\frac{S_{T_n}(1)}{S_{G_n}(1)}$ Den (T_n)

$$
\bullet \lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n + n^2 + 2n^3 + n^4}{\binom{n - 4\log_2(n)}{2}n^4} = 0 \quad \text{so} \lim_{n \to \infty} \frac{S_{G_n, e}(1)}{S_{G_n}(1)} = 1
$$

•
$$
\mu(G, e) = \frac{2n - 2\log_2(n) + 2}{3}
$$
 so $\lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}$

$$
\sup_{n \to \infty} \text{Den}(G_n) = \lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}
$$

- $\lim_{n \to \infty} \text{Den}(T_n) > \lim_{n \to \infty} \left(\frac{n-2 \log_2(n)-1}{n} \right)$ $\left(\frac{g_2(n)-1}{n}\right) = 1$ (Mol-Oellermann 2018) \bullet
- $\lim_{n \to \infty} \text{Den}(T_n) \text{Den}(G_n) = 1 \frac{2}{3} = \frac{1}{3}$ $\frac{1}{3}$. \bullet

Conjecture (C.-Mol 2020): Suppose *G* is a connected graph which is not complete. Then there is a graph *H*, obtained from *G* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Conjecture (C.-Mol 2020): Suppose *G* is a connected graph which is not complete. Then there is a graph *H*, obtained from *G* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Would follow that P_n minimizes and K_n maximizes $\mu(G)$ among all connected graphs of order *n*.

is a graph *H*, obtained from *T* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(T)$.

Theorem (C.-Mol 2020): For every tree *T* of order $n \geq 3$, there is a graph *H*, obtained from *T* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(T)$.

Figure: *T*

Theorem (C.-Mol 2020): For every tree *T* of order $n \geq 3$, there is a graph *H*, obtained from *T* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(T)$.

Figure: *T*; *H*

Theorem (C.-Mol 2020): For every tree *T* of order $n \geq 3$, there is a graph *H*, obtained from *T* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(T)$.

Figure: *T*; *H*

Key proof ingredients: Show $\mu(H, vw) \geq \mu(T, u)$.

Theorem (C.-Mol 2020): For every tree T of order $n > 3$, there is a graph *H*, obtained from *T* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(T)$.

Figure: *T*; *H*

Key proof ingredients: Show $\mu(H, vw) \geq \mu(T, u)$.

Local/Global Mean Inequality (Jamison 1983): If *T* is a tree, then for all $u \in V(T)$, $\mu(T, v) \geq \mu(T)$ with equality if and only if $T = K_1$.

Q: Why is Chin et al.'s conjecture for multigraphs but ours is just on graphs?

Q: Why is Chin et al.'s conjecture for multigraphs but ours is just on graphs?

Lemma (C.-Mol 2020): If *G* is a multigraph with $E(G) \neq \emptyset$, then there exists an edge $e \in E(G)$ such that $\mu(G, e) > \mu(G) > \mu(G - e).$

Q: Why is Chin et al.'s conjecture for multigraphs but ours is just on graphs?

Lemma (C.-Mol 2020): If *G* is a multigraph with $E(G) \neq \emptyset$, then there exists an edge $e \in E(G)$ such that $\mu(G, e) > \mu(G) > \mu(G - e).$

Proposition (C.-Mol 2020): Let *G* be a multigraph of order at least 2. Then there is a multigraph *H*, obtained from *G* by adding a new edge between a pair of distinct vertices of *G*, such that $\mu(H) > \mu(G)$.

Conjecture: Suppose *G* is a connected graph which is not complete. Then there is a graph *H*, obtained from *G* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Conjecture: Suppose *G* is a connected graph which is not complete. Then there is a graph *H*, obtained from *G* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Conjecture: If *G* is a connected graph of order *n*, then $\mu(P_n) \leq \mu(G) \leq \mu(K_n).$

Conjecture: Suppose *G* is a connected graph which is not complete. Then there is a graph *H*, obtained from *G* by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Conjecture: If *G* is a connected graph of order *n*, then $\mu(P_n) \leq \mu(G) \leq \mu(K_n).$

Problem: Suppose that a graph *H* is obtained from a connected graph *G* by adding an edge between two nonadjacent vertices of *G*. Determine sharp bounds on $Den(H) - Den(G)$.

[Mean subtree order](#page-1-0) $\begin{array}{ccc}\n\text{Decreasing } \mu(G) & \text{Increasing } \mu(G) \\
\text{ooo} & \text{ooo} & \text{ooo} & \text{ooo}\n\end{array}$ $\begin{array}{ccc}\n\text{Decreasing } \mu(G) & \text{Increasing } \mu(G) \\
\text{ooo} & \text{ooo} & \text{ooo} & \text{ooo}\n\end{array}$ $\begin{array}{ccc}\n\text{Decreasing } \mu(G) & \text{Increasing } \mu(G) \\
\text{ooo} & \text{ooo} & \text{ooo} & \text{ooo}\n\end{array}$ $\begin{array}{ccc}\n\text{Decreasing } \mu(G) & \text{Increasing } \mu(G) \\
\text{ooo} & \text{ooo} & \text{ooo} & \text{ooo}\n\end{array}$ $\begin{array}{ccc}\n\text{Decreasing } \mu(G) & \text{Increasing } \mu(G) \\
\text{ooo} & \text{ooo} & \text{ooo} & \text{ooo}\n\end{array}$

THANK YOU!

CanStockPhoto.com - csp58882792

Figure: A mean subtree.