The mean subtree order of a graph under edge addition

Ben Cameron

University of Guelph

ben.cameron@uoguelph.ca

(Joint work with Lucas Mol)

CMS Winter Meeting

December 4, 2020

Mean subtree order Decr	reasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
•••••	Э	000	

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
•0000	0000	000	00

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a <u>not necessarily induced</u> subgraph that is a tree.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
•0000			

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a <u>not necessarily induced</u> subgraph that is a tree.
- For a multigraph G, the mean subtree order of G, denoted $\mu(G)$, is the average order of a subtree of G.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
•0000	0000	000	

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a <u>not necessarily induced</u> subgraph that is a tree.
- For a multigraph G, the mean subtree order of G, denoted $\mu(G)$, is the average order of a subtree of G.

$$\mu(C_4) =$$

Mean subtree order Dec	creasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
••••••	00	000	00

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a <u>not necessarily induced</u> subgraph that is a tree.
- For a multigraph G, the mean subtree order of G, denoted $\mu(G)$, is the average order of a subtree of G.

Mean subtree order Dec	creasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
••••••	00	000	00

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a <u>not necessarily induced</u> subgraph that is a tree.
- For a multigraph G, the mean subtree order of G, denoted $\mu(G)$, is the average order of a subtree of G.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
•0000	0000	000	

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a <u>not necessarily induced</u> subgraph that is a tree.
- For a multigraph G, the mean subtree order of G, denoted $\mu(G)$, is the average order of a subtree of G.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
•0000	0000	000	

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a <u>not necessarily induced</u> subgraph that is a tree.
- For a multigraph G, the mean subtree order of G, denoted $\mu(G)$, is the average order of a subtree of G.

Mean subtree order Dec	creasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
••••••	00	000	00

- *Graphs* are finite, loopless, and contain no multiple edges.
- *Multigraphs* are finite, loopless, and may contain multiple edges.
- A *subtree* of a multigraph is a <u>not necessarily induced</u> subgraph that is a tree.
- For a multigraph G, the mean subtree order of G, denoted $\mu(G)$, is the average order of a subtree of G.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
0000			

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
0000			

• The subtree polynomial of G is
$$S_G(x) = \sum_{T \in \mathcal{T}_G} x^{|V(T)|}$$
.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

• The subtree polynomial of G is
$$S_G(x) = \sum_{T \in \mathcal{T}_G} x^{|V(T)|}$$
.

 $S_{C_4}(x) = 4x + 4x^2 + 4x^3 + 4x^4$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

• The subtree polynomial of G is
$$S_G(x) = \sum_{T \in \mathcal{T}_G} x^{|V(T)|}$$
.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
0000			

Let \mathcal{T}_G be the set of subtrees of G. Let $\mathcal{T}_{G,p}$ be the set of subtrees of G containing p (vertex or edge).

- The subtree polynomial of G is $S_G(x) = \sum_{T \in \mathcal{T}_G} x^{|V(T)|}$.
- The local subtree polynomial of G at p is $S_{G,p}(x) = \sum_{T \in \mathcal{T}_{G,p}} x^{|V(T)|}$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
0000			

Let \mathcal{T}_G be the set of subtrees of G. Let $\mathcal{T}_{G,p}$ be the set of subtrees of G containing p (vertex or edge).

- The subtree polynomial of G is $S_G(x) = \sum_{T \in \mathcal{T}_G} x^{|V(T)|}$.
- The local subtree polynomial of G at p is $S_{G,p}(x) = \sum_{T \in \mathcal{T}_{G,p}} x^{|V(T)|}$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Let \mathcal{T}_G be the set of subtrees of G. Let $\mathcal{T}_{G,p}$ be the set of subtrees of G containing p (vertex or edge).

- The subtree polynomial of G is $S_G(x) = \sum_{T \in \mathcal{T}_G} x^{|V(T)|}$.
- The local subtree polynomial of G at p is $S_{G,p}(x) = \sum_{T \in \mathcal{T}_{G,p}} x^{|V(T)|}$
- The local mean subtree order of G at p, $\mu(G, p)$, is the average order of a subtree of G containing p.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Note: For a graph G with p a vertex or edge, then

•
$$S_G(x) = S_{G,p}(x) + S_{G-p}(x)$$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	00

Note: For a graph G with p a vertex or edge, then

•
$$S_G(x) = S_{G,p}(x) + S_{G-p}(x)$$

• $\mu(G)$ is a weighted average of $\mu(G, p)$ and $\mu(G - p)$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
oo●oo	0000	000	00

Note: For a graph G with p a vertex or edge, then

•
$$S_G(x) = S_{G,p}(x) + S_{G-p}(x)$$

• $\mu(G)$ is a weighted average of $\mu(G, p)$ and $\mu(G - p)$ More precisely,

$$\mu(G) = \frac{S_{G,p}(1)}{S_G(1)}\mu(G,p) + \frac{S_{G-p}(1)}{S_G(1)}\mu(G-p).$$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
oo●oo	0000	000	00

Note: For a graph ${\cal G}$ with p a vertex or edge, then

•
$$S_G(x) = S_{G,p}(x) + S_{G-p}(x)$$

• $\mu(G)$ is a weighted average of $\mu(G, p)$ and $\mu(G - p)$ More precisely,

$$\mu(G) = \frac{S_{G,p}(1)}{S_G(1)}\mu(G,p) + \frac{S_{G-p}(1)}{S_G(1)}\mu(G-p).$$

In the 1980s, Jamison initiated the study of subtrees of trees.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is $K_{1,n-1}$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is $K_{1,n-1}$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is $K_{1,n-1}$.

Order 4:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is $K_{1,n-1}$.

Order 5:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is $K_{1,n-1}$.

Order 6:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is $K_{1,n-1}$.

Order 7:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is $K_{1,n-1}$.

Order 8:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 9:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 10:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 11:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 12:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 13:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
000●0	0000	000	00

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 14:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 15:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 16:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
000●0	0000	000	00

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 17:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
000●0	0000	000	00

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 18:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 19:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
000●0	0000	000	00

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 20:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
000●0	0000	000	00

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 21:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 22:

(Mol-Oellermann 2018)

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 23:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

Naive Conjecture: The tree of order n with maximum mean subtree order is the star of order n.

Conjecture (Jamison 1983): The tree of order n with maximum mean subtree order is a caterpillar.

Order 24:

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

In 2018, Chin, Gordon, MacPhee & Vincent extended the study of subtrees from trees to graphs by considering:

- The subree polynomial, $S_G(x)$ of graphs.
- The shape of the coefficient sequence of $S_G(x)$.
- The probability that a randomly chosen tree is spanning.
- The mean subtree order of a graph G, $\mu(G)$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

In 2018, Chin, Gordon, MacPhee & Vincent extended the study of subtrees from trees to graphs by considering:

- The subree polynomial, $S_G(x)$ of graphs.
- The shape of the coefficient sequence of $S_G(x)$.
- The probability that a randomly chosen tree is spanning.
- The mean subtree order of a graph G, $\mu(G)$.

Conjecture (Chin et al. 2018): Suppose that G is a connected multigraph, and that H is obtained from G by adding an edge between two distinct vertices of G. Then $\mu(G) < \mu(H)$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000			

In 2018, Chin, Gordon, MacPhee & Vincent extended the study of subtrees from trees to graphs by considering:

- The subree polynomial, $S_G(x)$ of graphs.
- The shape of the coefficient sequence of $S_G(x)$.
- The probability that a randomly chosen tree is spanning.
- The mean subtree order of a graph G, $\mu(G)$.

Conjecture (Chin et al. 2018): Suppose that G is a connected multigraph, and that H is obtained from G by adding an edge between two distinct vertices of G. Then $\mu(G) < \mu(H)$.

It would follow that P_n minimizes and K_n maximizes $\mu(G)$ among all connected graphs of order n.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	●000		

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	● 0 00		

Figure: G

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	● 0 00		

Figure: G

•
$$\mu(G+ab) - \mu(G) \approx -0.000588$$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	● 0 00		

Figure: G

- $\mu(G+ab)-\mu(G)\approx -0.000588$
- G is the smallest counterexample to the Conjecture and the unique counterexample of order 7.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	● 0 00		

Figure: G

- $\mu(G+ab)-\mu(G)\approx -0.000588$
- G is the smallest counterexample to the Conjecture and the unique counterexample of order 7.
- 347 counterexamples of order 8!

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	0000		

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	0000		

Figure: $K_{2,n}$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	0000		

Figure: $K_{2,n}$; H_n

• $\mu(K_{2,n}) > \mu(H_n)$ for all $n \ge 6$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	0000		

Figure: $K_{2,n}$; H_n

- $\mu(K_{2,n}) > \mu(H_n)$ for all $n \ge 6$.
- But, $\mu(K_{2,n}) \mu(H_n) \to 0$ as $n \to \infty$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	0000		

Figure: $K_{2,n}$; H_n

- $\mu(K_{2,n}) > \mu(H_n)$ for all $n \ge 6$.
- But, $\mu(K_{2,n}) \mu(H_n) \to 0$ as $n \to \infty$.
- $\max\{\mu(K_{2,n}) \mu(H_n) : n \ge 1\} \approx 0.070067.$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	0000		

Figure: $K_{2,n}$; H_n

- $\mu(K_{2,n}) > \mu(H_n)$ for all $n \ge 6$.
- But, $\mu(K_{2,n}) \mu(H_n) \to 0$ as $n \to \infty$.
- $\max\{\mu(K_{2,n}) \mu(H_n) : n \ge 1\} \approx 0.070067.$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	0000		

Figure: $K_{2,n}$; H_n

- $\mu(K_{2,n}) > \mu(H_n)$ for all $n \ge 6$.
- But, $\mu(K_{2,n}) \mu(H_n) \to 0$ as $n \to \infty$.
- $\max\{\mu(K_{2,n}) \mu(H_n) : n \ge 1\} \approx 0.070067.$

Maybe adding an edge cannot decrease $\mu(G)$ by too much?

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	0000		

Theorem (C.-Mol 2020): Adding an edge between two distinct, nonadjacent vertices of a connected graph can decrease the density by an amount arbitrarily close to 1/3.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
	0000		

Theorem (C.-Mol 2020): Adding an edge between two distinct, nonadjacent vertices of a connected graph can decrease the density by an amount arbitrarily close to 1/3.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	

Theorem (C.-Mol 2020): Adding an edge between two distinct, nonadjacent vertices of a connected graph can decrease the density by an amount arbitrarily close to 1/3.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	

Theorem (C.-Mol 2020): Adding an edge between two distinct, nonadjacent vertices of a connected graph can decrease the density by an amount arbitrarily close to 1/3.

Figure: T_n ; $G_n = T_n + e$

Show $\lim_{n \to \infty} \operatorname{Den}(T_n) - \operatorname{Den}(G_n) = \frac{1}{3}$.

$$\lim_{n \to \infty} \operatorname{Den}(T_n) - \operatorname{Den}(G_n) = \frac{1}{3}$$

Proof Sketch cont.:
$$\operatorname{Den}(G_n) = \frac{S_{G_n,e}(1)}{S_{G_n}(1)} \operatorname{Den}(G,e) + \frac{S_{T_n}(1)}{S_{G_n}(1)} \operatorname{Den}(T_n)$$

$$\lim_{n \to \infty} \operatorname{Den}(T_n) - \operatorname{Den}(G_n) = \frac{1}{3}$$

•
$$\lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n + n^2 + 2n^3 + n^4}{\binom{n-4\log_2(n)}{2}n^4} = 0$$

$$\lim_{n \to \infty} \operatorname{Den}(T_n) - \operatorname{Den}(G_n) = \frac{1}{3}$$

•
$$\lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n+n^2+2n^3+n^4}{\binom{n-4\log_2(n)}{2}n^4} = 0$$
 so $\lim_{n \to \infty} \frac{S_{G_n,e}(1)}{S_{G_n}(1)} = 1$

$$\lim_{n \to \infty} \operatorname{Den}(T_n) - \operatorname{Den}(G_n) = \frac{1}{3}$$

•
$$\lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n + n^2 + 2n^3 + n^4}{\binom{n-4\log_2(n)}{2}n^4} = 0 \quad \text{so } \lim_{n \to \infty} \frac{S_{G_n,e}(1)}{S_{G_n}(1)} = 1$$

•
$$\mu(G, e) = \frac{2n - 2\log_2(n) + 2}{3}$$

$$\lim_{n \to \infty} \operatorname{Den}(T_n) - \operatorname{Den}(G_n) = \frac{1}{3}$$

•
$$\lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n+n^2+2n^3+n^4}{\binom{n-4\log_2(n)}{2}n^4} = 0$$
 so $\lim_{n \to \infty} \frac{S_{G_n,e}(1)}{S_{G_n}(1)} = 1$
• $\mu(G, e) = \frac{2n-2\log_2(n)+2}{3}$ so $\lim_{n \to \infty} \operatorname{Den}(G_n, e) = \frac{2}{3}$

•
$$\lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n+n^2+2n^3+n^4}{\binom{n-4\log_2(n)}{2}n^4} = 0$$
 so $\lim_{n \to \infty} \frac{S_{G_n,e}(1)}{S_{G_n}(1)} = 1$

•
$$\mu(G, e) = \frac{2n - 2\log_2(n) + 2}{3}$$
 so $\lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}$

•
$$\lim_{n \to \infty} \operatorname{Den}(G_n) = \lim_{n \to \infty} \operatorname{Den}(G_n, e) = \frac{2}{3}$$

$$\lim_{n \to \infty} \operatorname{Den}(T_n) - \operatorname{Den}(G_n) = \frac{1}{3}$$

•
$$\lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n+n^2+2n^3+n^4}{\binom{n-4\log_2(n)}{2}n^4} = 0$$
 so $\lim_{n \to \infty} \frac{S_{G_n,e}(1)}{S_{G_n}(1)} = 1$

•
$$\mu(G, e) = \frac{2n - 2\log_2(n) + 2}{3}$$
 so $\lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}$

•
$$\lim_{n \to \infty} \text{Den}(G_n) = \lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}$$

•
$$\lim_{n \to \infty} \operatorname{Den}(T_n) > \lim_{n \to \infty} \left(\frac{n - 2\log_2(n) - 1}{n} \right) = 1$$
 (Mol-Oellermann 2018)

Proof Sketch cont.: $\operatorname{Den}(G_n) = \frac{S_{G_n,e}(1)}{S_{G_n}(1)} \operatorname{Den}(G,e) + \frac{S_{T_n}(1)}{S_{G_n}(1)} \operatorname{Den}(T_n)$

•
$$\lim_{n \to \infty} \frac{S_{T_n}(1)}{S_{G_n}(1)} \le \lim_{n \to \infty} \frac{n+n^2+2n^3+n^4}{\binom{n-4\log_2(n)}{2}n^4} = 0$$
 so $\lim_{n \to \infty} \frac{S_{G_n,e}(1)}{S_{G_n}(1)} = 1$

•
$$\mu(G, e) = \frac{2n - 2\log_2(n) + 2}{3}$$
 so $\lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}$

•
$$\lim_{n \to \infty} \text{Den}(G_n) = \lim_{n \to \infty} \text{Den}(G_n, e) = \frac{2}{3}$$

- $\lim_{n \to \infty} \operatorname{Den}(T_n) > \lim_{n \to \infty} \left(\frac{n 2\log_2(n) 1}{n} \right) = 1$ (Mol-Oellermann 2018)
- $\lim_{n \to \infty} \text{Den}(T_n) \text{Den}(G_n) = 1 \frac{2}{3} = \frac{1}{3}.$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	•00	00

Conjecture (C.-Mol 2020): Suppose G is a connected graph which is not complete. Then there is a graph H, obtained from G by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	• 00	00

Conjecture (C.-Mol 2020): Suppose G is a connected graph which is not complete. Then there is a graph H, obtained from G by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Would follow that P_n minimizes and K_n maximizes $\mu(G)$ among all connected graphs of order n.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	$0 \bullet 0$	00

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	

Figure: T

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	

Figure: T; H

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	

Figure: T; H

Key proof ingredients: Show $\mu(H, vw) \ge \mu(T, u)$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	

Figure: T; H

Key proof ingredients: Show $\mu(H, vw) \ge \mu(T, u)$.

Local/Global Mean Inequality (Jamison 1983): If T is a tree, then for all $u \in V(T)$, $\mu(T, v) \ge \mu(T)$ with equality if and only if $T = K_1$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
		000	

Q: Why is Chin et al.'s conjecture for multigraphs but ours is just on graphs?

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	

Q: Why is Chin et al.'s conjecture for multigraphs but ours is just on graphs?

Lemma (C.-Mol 2020): If G is a multigraph with $E(G) \neq \emptyset$, then there exists an edge $e \in E(G)$ such that $\mu(G, e) > \mu(G) > \mu(G - e).$

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	

Q: Why is Chin et al.'s conjecture for multigraphs but ours is just on graphs?

Lemma (C.-Mol 2020): If G is a multigraph with $E(G) \neq \emptyset$, then there exists an edge $e \in E(G)$ such that $\mu(G, e) > \mu(G) > \mu(G - e).$

Proposition (C.-Mol 2020): Let G be a multigraph of order at least 2. Then there is a multigraph H, obtained from G by adding a new edge between a pair of distinct vertices of G, such that $\mu(H) > \mu(G)$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	●0
Open Problems			

Conjecture: Suppose G is a connected graph which is not complete. Then there is a graph H, obtained from G by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	$\operatorname{Conclusion}_{0}$
00000	0000	000	
Open Problems			

Conjecture: Suppose G is a connected graph which is not complete. Then there is a graph H, obtained from G by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Conjecture: If G is a connected graph of order n, then $\mu(P_n) \leq \mu(G) \leq \mu(K_n)$.

Mean subtree order	Decreasing $\mu(G)$	Increasing $\mu(G)$	Conclusion
00000	0000	000	
Open Problems			

Conjecture: Suppose G is a connected graph which is not complete. Then there is a graph H, obtained from G by joining two distinct, nonadjacent vertices, such that $\mu(H) > \mu(G)$.

Conjecture: If G is a connected graph of order n, then $\mu(P_n) \leq \mu(G) \leq \mu(K_n)$.

Problem: Suppose that a graph H is obtained from a connected graph G by adding an edge between two nonadjacent vertices of G. Determine sharp bounds on Den(H) - Den(G).

Mean subtree order 00000 Decreasing $\mu(G)$

Increasing $\mu(G)$ 000 Conclusion 0•

THANK YOU!

CanStockPhoto.com - csp58882792

Figure: A mean subtree.