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Mean subtree order Decreasing µ(G) Increasing µ(G) Conclusion

Graphs are finite, loopless, and contain no multiple edges.
Multigraphs are finite, loopless, and may contain multiple
edges.

A subtree of a multigraph is a not necessarily induced
subgraph that is a tree.
For a multigraph G, the mean subtree order of G, denoted
µ(G), is the average order of a subtree of G.
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Let TG be the set of subtrees of G.

Let TG,p be the set of
subtrees of G containing p (vertex or edge).

The subtree polynomial of G is SG(x) =
∑

T∈TG
x|V (T )|.

The local subtree polynomial of G at p is
SG,p(x) =

∑
T∈TG,p

x|V (T )|

The local mean subtree order of G at p, µ(G, p), is the
average order of a subtree of G containing p.

SC4(x) = 4x+ 4x2 + 4x3 + 4x4 µ(C4) =
S′C4

(1)
SC4 (1) = 40

16 .

SC4,e(x) = x2 + 2x3 + 3x4 µ(C4, e) =
S′C4,e

(1)
SC4,e(1) = 20

6 .
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Note: For a graph G with p a vertex or edge, then
SG(x) = SG,p(x) + SG−p(x)

µ(G) is a weighted average of µ(G, p) and µ(G− p)
More precisely,

µ(G) = SG,p(1)
SG(1) µ(G, p) + SG−p(1)

SG(1) µ(G− p).

In the 1980s, Jamison initiated the study of subtrees of trees.
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Theorem (Jamison 1983): The tree of order n with minimum
mean subtree order is the path Pn.

Conjecture (Jamison 1983): The tree of order n with maximum
mean subtree order is a caterpillar.

Order 4:

(Mol-Oellermann 2018)
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In 2018, Chin, Gordon, MacPhee & Vincent extended the study
of subtrees from trees to graphs by considering:

The sutbree polynomial, SG(x) of graphs.
The shape of the coefficient sequence of SG(x).
The probability that a randomly chosen tree is spanning.
The mean subtree order of a graph G, µ(G).

Conjecture (Chin et al. 2018): Suppose that G is a connected
multigraph, and that H is obtained from G by adding an edge
between two distinct vertices of G. Then µ(G) < µ(H).

It would follow that Pn minimizes and Kn maximizes µ(G)
among all connected graphs of order n.
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Conjecture is true for all simple graphs of order ≤ 6
(verified in Sagemath).

a

b

Figure: G

µ(G+ ab)− µ(G) ≈ −0.000588
G is the smallest counterexample to the Conjecture and the
unique counterexample of order 7.
347 counterexamples of order 8!
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Is this just an anomaly for small graphs?

ab

u1 u2 un
. . .

Figure: K2,n

; Hn

µ(K2,n) > µ(Hn) for all n ≥ 6.
But, µ(K2,n)− µ(Hn)→ 0 as n→∞.
max{µ(K2,n)− µ(Hn) : n ≥ 1} ≈ 0.070067.

Maybe adding an edge cannot decrease µ(G) by too much?
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The density of a graph G of order n is Den(G) = µ(G)
n .

Theorem (C.-Mol 2020): Adding an edge between two distinct,
nonadjacent vertices of a connected graph can decrease the
density by an amount arbitrarily close to 1/3.

Proof Sketch:

. . .

..
.

..
.

path of order n − 4 log2(n)
2 log2(n) leaves 2 log2(n) leaves

Figure: Tn

; Gn = Tn + e

Show lim
n→∞

Den(Tn)−Den(Gn) = 1
3 .
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Proof Sketch cont.: Den(Gn) = SGn,e(1)
SGn (1) Den(G, e) + STn (1)

SGn (1) Den(Tn)

lim
n→∞

STn (1)
SGn (1) ≤ lim

n→∞
n+n2+2n3+n4

(n−4 log2(n)
2 )n4 = 0

so lim
n→∞

SGn,e(1)
SGn (1) = 1

µ(G, e) = 2n−2 log2(n)+2
3

so lim
n→∞

= 2
3

lim
n→∞

= lim
n→∞

Den(Gn, e) = 2
3

lim
n→∞

> lim
n→∞

(
n−2 log2(n)−1

n

)
= 1 (Mol-Oellermann 2018)

lim
n→∞

Den(Tn)−Den(Gn) = 1− 2
3 = 1
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Conjecture (C.-Mol 2020): Suppose G is a connected graph
which is not complete. Then there is a graph H, obtained from
G by joining two distinct, nonadjacent vertices, such that
µ(H) > µ(G).

Would follow that Pn minimizes and Kn maximizes µ(G)
among all connected graphs of order n.
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Theorem (C.-Mol 2020): For every tree T of order n ≥ 3, there
is a graph H, obtained from T by joining two distinct,
nonadjacent vertices, such that µ(H) > µ(T ).

u
v

w
R

P

Q

Figure: T

; H

Key proof ingredients: Show µ(H, vw) ≥ µ(T, u).

Local/Global Mean Inequality (Jamison 1983): If T is a tree,
then for all u ∈ V (T ), µ(T, v) ≥ µ(T ) with equality if and only
if T = K1.
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Q: Why is Chin et al.’s conjecture for multigraphs but ours is
just on graphs?

Lemma (C.-Mol 2020): If G is a multigraph with E(G) 6= ∅,
then there exists an edge e ∈ E(G) such that
µ(G, e) > µ(G) > µ(G− e).

Proposition (C.-Mol 2020): Let G be a multigraph of order at
least 2. Then there is a multigraph H, obtained from G by
adding a new edge between a pair of distinct vertices of G, such
that µ(H) > µ(G).
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Open Problems

Conjecture: Suppose G is a connected graph which is not
complete. Then there is a graph H, obtained from G by joining
two distinct, nonadjacent vertices, such that µ(H) > µ(G).

Conjecture: If G is a connected graph of order n, then
µ(Pn) ≤ µ(G) ≤ µ(Kn).

Problem: Suppose that a graph H is obtained from a connected
graph G by adding an edge between two nonadjacent vertices of
G. Determine sharp bounds on Den(H)−Den(G).
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Thank You!

Figure: A mean subtree.
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