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Definitions

Pn is the path on n vertices (P3: ).

G + H denotes the disjoint union of graphs G and H.

ℓG = G + G + · · · + G︸ ︷︷ ︸
ℓ

(P2 + 2P1: ).

Coloring here means proper coloring (adjacent vertices get
different colors).
A graph is H-free if it does not contain H as an induced

subgraph. is P5-free but not P4-free.
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Definition: For fixed k, the k-Coloring decision problem is to
determine if a given graph is k-colorable.

Figure: Decide 3-Coloring for this graph.

k-Coloring is NP-complete for all k ≥ 3 (Karp 1972).
It remains NP-complete when restricted to H-free graphs if
H contains a cycle (Kamiński-Lozin 2007).
It remains NP-complete when restricted to H-free graphs if
H contains a claw (Hoyler 1981; Leven-Gail 1983).



Coloring Critical Graphs Our Results Conclusion

Definition: For fixed k, the k-Coloring decision problem is to
determine if a given graph is k-colorable.

Figure: Decide 3-Coloring for this graph.

k-Coloring is NP-complete for all k ≥ 3 (Karp 1972).

It remains NP-complete when restricted to H-free graphs if
H contains a cycle (Kamiński-Lozin 2007).
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Theorem (Hoàng et al. 2010) k-Coloring P5-free graphs can
be solved in polynomial-time for all k

and the algorithm gives a
valid k-coloring if one exists.

3-Coloring−→ −→ yesno

A k-coloring is a certificate to verify a “yes”.
How can we verify a “no”?
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A graph G is k-vertex-critical if G is not (k − 1)-colorable,
but every induced subgraph of G is.

Every graph that is not k-colorable has a
(k + 1)-vertex-critical induced subgraph.

Issue 1: For k ≥ 3 there are an infinite number of
k-vertex-critical graphs.
Issue 2: k-vertex-critical is a mouthful, so simply k-critical from
now on.
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More bad news

Theorem (e.g. Erdős 1959): If H contains an induced cycle,
then there is an infinite number of k-critical H-free graphs for
all k ≥ 3.

Theorem (e.g. Lazebnik-Ustimenko 1995): If H contains an
induced claw, then there is an infinite number of k-critical
H-free graphs for all k ≥ 3.

Theorem (Hoàng et al. 2015): If H contains an induced 2P2,
then there is an infinite number of k-critical H-free graphs for
all k ≥ 5.
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Theorem (Abuadas-C.-Hoàng-Sawada 2022+) There are only
finitely many k-critical (P3 + ℓP1)-free graphs for all k and ℓ.

G

S

A B

. . .

• G:k-critical (P3 + ℓP1)-free

• S:maximum independent set
• A = {v ∈ G − S : |N(v) ∩ S| = 1}
• B = {v ∈ G − S : |N(v) ∩ S| ≥ 2}
• ∀b ∈ B |N(b) ∩ S| ≥ |S| − ℓ + 1

...

• Color c appears in B ⇒ at most
(k − 1)(ℓ + 3) − 1 vertices get c

...

• α(G) < (k − 1)2(ℓ + 3)
• |V (G)| < R(k, (k − 1)2(ℓ + 3)) □



Coloring Critical Graphs Our Results Conclusion
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Theorem (Karthick-Maffray 2018): If G is (gem,co-gem)-free,
then either G is perfect, or G is a P4-free expansion of Gi for
some i ∈ {1, 2, . . . , 10}, or G ∈ H.
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Theorem (Abuadas-C.-Hoàng-Sawada 2022+) There are only
finitely many k-critical (gem, co-gem)-free graphs for all k and
every such non-complete graph is a clique-expansion of C5.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
num(k) 1 1 2 2 4 6 11 17 27 39 58 80 112 148 197 253

Table: num(k) denotes the number of k-critical (gem, co-gem)-free
graphs.
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