Vertex-critical $(P_3 + \ell P_1)$ -free graphs

Ben Cameron (he/him)

The King's University

ben.cameron@kingsu.ca

(Joint work with Tala Abuadas, Chính Hoàng, and Joe Sawada)

Coast Combinatorics Conference 2023

March 4, 2023

Figure: Ben, Asher, Joe, Kaito - Toronto, ON 2021

Coloring	Critical Graphs	Our Results	Conclusion
●00	0000	0000	o
Definitions			

• P_n is the path on n vertices $(P_3: \bullet \bullet \bullet)$.

Coloring	Critical Graphs	Our Results	Conclusion
●00	0000	0000	o
Definitions			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

Coloring	Critical Graphs	Our Results	Conclusion
●00	0000	0000	o
Definitions			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1: \bullet).$$

Coloring	Critical Graphs	Our Results	Conclusion
●00	0000	0000	o
Definitions			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1: \bullet).$$

• Coloring here means proper coloring (adjacent vertices get different colors).

Coloring	Critical Graphs	Our Results	$\operatorname{Conclusion}_{O}$
●00	0000	0000	
Definitions			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1: \bullet \bullet).$$

- Coloring here means proper coloring (adjacent vertices get different colors).
- A graph is *H*-free if it does not contain *H* as an induced subgraph. is P_5 -free but not P_4 -free.

 $\underset{0000}{\operatorname{Our}\ Results}$

Definition: For fixed k, the k-COLORING decision problem is to determine if a given graph is k-colorable.

Figure: Decide 3-COLORING for this graph.

Our Results

Definition: For fixed k, the k-COLORING decision problem is to determine if a given graph is k-colorable.

Figure: Decide 3-COLORING for this graph.

• k-COLORING is NP-complete for all $k \ge 3$ (Karp 1972).

 $\underset{0000}{\operatorname{Our}\ Results}$

Definition: For fixed k, the k-COLORING decision problem is to determine if a given graph is k-colorable.

Figure: Decide 3-COLORING for this graph.

- *k*-COLORING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).

Our Results

Definition: For fixed k, the k-COLORING decision problem is to determine if a given graph is k-colorable.

Figure: Decide 3-COLORING for this graph.

- *k*-COLORING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a claw (Hoyler 1981; Leven-Gail 1983).

 $\begin{array}{c} \text{Coloring} \\ \text{oo} \bullet \end{array}$

Critical Graph 0000 $\underset{0000}{\operatorname{Our}\ Results}$

Theorem (Hoàng et al. 2010) k-COLORING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-coloring if one exists.

• A k-coloring is a certificate to verify a "yes".

 $\begin{array}{c} \operatorname{Coloring} \\ \circ \circ \bullet \end{array}$

Critical Graph 0000 $\underset{0000}{\operatorname{Our}\ Results}$

Theorem (Hoàng et al. 2010) k-COLORING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-coloring if one exists.

• A k-coloring is a certificate to verify a "yes".

 $\begin{array}{c} \operatorname{Coloring} \\ \circ \circ \bullet \end{array}$

Critical Graph 0000 $\underset{0000}{\operatorname{Our}\ Results}$

Theorem (Hoàng et al. 2010) k-COLORING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-coloring if one exists.

• A k-coloring is a certificate to verify a "yes".

Theorem (Hoàng et al. 2010) k-COLORING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-coloring if one exists.

- A k-coloring is a certificate to verify a "yes".
- How can we verify a "no"?

Coloring	Critical Graphs	Our Results	Conclusion
000	●000	0000	0

• A graph G is k-vertex-critical if G is not (k-1)-colorable, but every induced subgraph of G is.

Coloring	Critical Graphs	Our Results	Conclusion
000	●000	0000	o

- A graph G is k-vertex-critical if G is not (k-1)-colorable, but every induced subgraph of G is.
- Every graph that is not k-colorable has a (k+1)-vertex-critical induced subgraph.

Coloring	Critical Graphs	Our Results	Conclusion
000	•000	0000	0

- A graph G is k-vertex-critical if G is not (k-1)-colorable, but every induced subgraph of G is.
- Every graph that is not k-colorable has a (k+1)-vertex-critical induced subgraph.

Issue 1: For $k \ge 3$ there are an infinite number of k-vertex-critical graphs.

Coloring	Critical Graphs	Our Results	$_{\rm o}^{\rm Conclusion}$
000	●000	0000	

- A graph G is k-vertex-critical if G is not (k-1)-colorable, but every induced subgraph of G is.
- Every graph that is not k-colorable has a (k+1)-vertex-critical induced subgraph.

Issue 1: For $k \ge 3$ there are an infinite number of k-vertex-critical graphs.

Issue 2: k-vertex-critical is a mouthful, so simply k-critical from now on.

Critical Graphs $0 \bullet 00$

 $\underset{0000}{\operatorname{Our}} \operatorname{Results}$

Critical Graphs 0 = 00

 $\underset{0000}{\operatorname{Our}\ Results}$

Our Results 0000

 $\underset{0000}{\operatorname{Our}} \operatorname{Results}$

Our Results 0000

 $\underset{0000}{\operatorname{Our}} \operatorname{Results}$

Critical Graphs $0 \bullet 00$

 $\underset{0000}{\operatorname{Our}} \operatorname{Results}$

Coloring	Critical Graphs	Our Results	Conclusion
000	00●0	0000	o
More bad	news		

Theorem (e.g. Erdős 1959): If H contains an induced cycle, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Theorem (e.g. Lazebnik-Ustimenko 1995): If H contains an induced claw, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Coloring	Critical Graphs	Our Results	Conclusion
000	0000	0000	o
More bad	news		

Theorem (e.g. Erdős 1959): If H contains an induced cycle, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Theorem (e.g. Lazebnik-Ustimenko 1995): If H contains an induced claw, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Theorem (Hoàng et al. 2015): If H contains an induced $2P_2$, then there is an infinite number of k-critical H-free graphs for all $k \geq 5$.

Critical Graphs $000 \bullet$

Our Results 0000

Question For which H are there only finitely many k-critical H-free graphs for all k?

Critical Graphs 0000

Our Results 0000

Question For which H are there only finitely many k-critical H-free graphs for all k?

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020): There are only finitely many 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

Critical Graphs 0000

 $\underset{0000}{\operatorname{Our}} \operatorname{Results}$

Question For which H are there only finitely many k-critical H-free graphs for all k?

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020): There are only finitely many 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

H must be one of:

• ℓP_1

- $P_2 + \ell P_1$
- $P_3 + \ell P_1$
- $P_4 + \ell P_1$

• G:k-critical $(P_3 + \ell P_1)$ -free

Coloring	Critical Graphs	Our Results	Conclusion
000	0000	•000	o

- G:k-critical $(P_3 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set

Coloring	Critical Graphs	Our Results	Conclusion
000	0000	●000	o

- G:k-critical $(P_3 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set

•
$$A = \{v \in G - S : |N(v) \cap S| = 1\}$$

Coloring	Critical Graphs	Our Results	Conclusion
000	0000	●000	o

- G:k-critical $(P_3 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set

•
$$A = \{v \in G - S : |N(v) \cap S| = 1\}$$

•
$$B = \{ v \in G - S : |N(v) \cap S| \ge 2 \}$$

Coloring	Critical Graphs	Our Results	Conclusion
000	0000	•000	o

- G:k-critical $(P_3 + \ell P_1)$ -free
- $\bullet~S:{\rm maximum}~{\rm independent}~{\rm set}$

•
$$A = \{v \in G - S : |N(v) \cap S| = 1\}$$

•
$$B = \{v \in G - S : |N(v) \cap S| \ge 2\}$$

•
$$\forall b \in B | N(b) \cap S | \ge |S| - \ell + 1$$

Coloring	Critical Graphs	Our Results	$\mathop{\mathrm{Conclusion}}_{\mathrm{O}}$
000	0000	●000	

- G:k-critical $(P_3 + \ell P_1)$ -free
- S:maximum independent set

•
$$A = \{v \in G - S : |N(v) \cap S| = 1\}$$

•
$$B = \{v \in G - S : |N(v) \cap S| \ge 2\}$$

•
$$\forall b \in B | N(b) \cap S | \ge |S| - \ell + 1$$

• Color c appears in $B \Rightarrow$ at most $(k-1)(\ell+3) - 1$ vertices get c

Coloring	Critical Graphs	Our Results	$_{\circ}^{\rm Conclusion}$
000	0000	●000	

Coloring	Critical Graphs	Our Results	$_{\circ}^{\rm Conclusion}$
000	0000	●000	

- G:k-critical $(P_3 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set

•
$$A = \{v \in G - S : |N(v) \cap S| = 1\}$$

•
$$B = \{ v \in G - S : |N(v) \cap S| \ge 2 \}$$

•
$$\forall b \in B | N(b) \cap S | \ge |S| - \ell + 1$$

• Color c appears in $B \Rightarrow$ at most $(k-1)(\ell+3) - 1$ vertices get c

•
$$\alpha(G) < (k-1)^2(\ell+3)$$

• $|V(G)| < R(k, (k-1)^2(\ell+3))$

Coloring 000	Critical Graphs 0000	Our Results $0 \bullet 00$	Conclusion o
Question F	Revisited		

Question For which H are there only finitely many k-critical H-free graphs for all k?

H must be one of:• ℓP_1 • $P_2 + \ell P_1$ • $P_3 + \ell P_1$ • $P_4 + \ell P_1$

Question For which H are there only finitely many k-critical H-free graphs for all k?

Figure: The graphs gem (left) and co-gem= $P_4 + P_1$ (right).

Critical Graph 0000 $\underset{00 \bullet 0}{\operatorname{Our}} \operatorname{Results}$

Theorem (Karthick-Maffray 2018): If G is (gem,co-gem)-free, then either G is perfect, or G is a P_4 -free expansion of G_i for some $i \in \{1, 2, ..., 10\}$, or $G \in \mathcal{H}$.

Coloring	Critical Graphs	Our Results 000	Conclusion
000	0000		o

Theorem (Abuadas-C.-Hoàng-Sawada 2022+) There are only finitely many k-critical (gem, co-gem)-free graphs for all k and every such non-complete graph is a clique-expansion of C_5 .

Coloring	Critical Graphs	Our Results	Conclusion
000	0000		o

Theorem (Abuadas-C.-Hoàng-Sawada 2022+) There are only finitely many k-critical (gem, co-gem)-free graphs for all k and every such non-complete graph is a clique-expansion of C_5 .

Our Results 0000

Question For which values of $\ell \geq 1$ are there only finitely many k-critical $(P_4 + \ell P_1)$ -free graphs for all k?

Question For which graph H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Our Results 0000

Question For which values of $\ell \geq 1$ are there only finitely many k-critical $(P_4 + \ell P_1)$ -free graphs for all k?

Question For which graph H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Figure: Scan QR code for the paper. Thanks to NSERC for support!

THANK YOU!