A finite and an infinite family of k-critical (P_5, H) -free graphs

Ben Cameron (he/him)

The King's University

ben.cameron@kingsu.ca

(Joint work with Chính Hoàng)

CanaDAM 2023

June 7, 2023

Coloring ●00	Critical Graphs 000	(P_5, gem) -free	(P_5, C_5) -free	Conclusion 00
Definition	ns			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1; \bullet).$$

- Coloring here means proper coloring (adjacent vertices get different colors).
- A graph is *H*-free if it does not contain *H* as an induced subgraph. is P_5 -free but not P_4 -free.

Coloring	Critical Graphs	(P_5, gem) -free	Conclusion
o●o	000	000	00

Figure: Decide 3-COLORING for this graph.

Coloring o●o	Critical Graphs 000	(P_5, gem) -free	Conclusion 00

Figure: Decide 3-COLORING for this graph.

• *k*-COLORING is NP-complete for all $k \ge 3$ (Karp 1972).

Coloring o●o	Critical Graphs 000	(P_5, gem) -free	Conclusion 00

Figure: Decide 3-COLORING for this graph.

- k-COLORING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).

Coloring o●o	(P_5, gem) -free 000	Conclusion 00

Figure: Decide 3-COLORING for this graph.

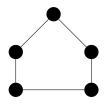
- *k*-COLORING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a claw (Holyer 1981; Leven-Gail 1983).

Coloring 00●

Critical Graphs

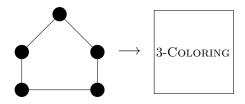
 (P_5, gem) -free

 (P_5, C_5) -free 0000 Conclusion 00



Critical Graphs 000 (P_5, gem) -free

 (P_5, C_5) -free 0000 Conclusion 00



Critical Graphs 000 (P_5, gem) -free

 (P_5, C_5) -free 0000 Conclusion 00

Coloring

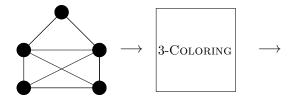
000

Theorem (Hoàng et al. 2010) k-COLORING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid *k*-coloring if one exists.

• A k-coloring is a certificate to verify a "yes".

Coloring
000Critical Graphs
000 (P_5, gem) -free
000 (P_5, C_5) -free
0000

Theorem (Hoàng et al. 2010) k-COLORING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-coloring if one exists.



• A k-coloring is a certificate to verify a "yes".

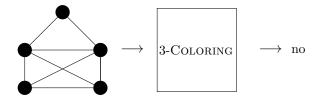
Coloring
000Critical Graphs
000 (P_5, gem) -free
000 (P_5, C_5) -free
0000

Theorem (Hoàng et al. 2010) k-COLORING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-coloring if one exists.

• A k-coloring is a certificate to verify a "yes".

 $\begin{array}{c} \textbf{Coloring} \\ \textbf{oo} \bullet \end{array} \quad \begin{array}{c} \text{Critical Graphs} \\ \textbf{ooo} \end{array} \quad \begin{array}{c} (P_5, \text{gem})\text{-free} \\ \textbf{ooo} \end{array} \quad \begin{array}{c} (P_5, C_5)\text{-free} \\ \textbf{ooo} \end{array}$

Theorem (Hoàng et al. 2010) k-COLORING P_5 -free graphs can be solved in polynomial-time for all k and the algorithm gives a valid k-coloring if one exists.



- A k-coloring is a certificate to verify a "yes".
- How can we verify a "no"?

Coloring 000	Critical Graphs •00	(P_5, gem) -free	(P_5, C_5) -free	$\begin{array}{c} \operatorname{Conclusion} \\ \operatorname{OO} \end{array}$

• A graph G is k-critical if G is not (k-1)-colorable, but every induced subgraph of G is.

Coloring 000	Critical Graphs ●00	(P_5, gem) -free	(P_5, C_5) -free	Conclusion 00

- A graph G is k-critical if G is not (k-1)-colorable, but every induced subgraph of G is.
- Every graph that is not k-colorable has a (k + 1)-critical induced subgraph.

Coloring 000	Critical Graphs ●00	(P_5, gem) -free	(P_5, C_5) -free	Conclusion 00

- A graph G is k-critical if G is not (k-1)-colorable, but every induced subgraph of G is.
- Every graph that is not k-colorable has a (k + 1)-critical induced subgraph.

Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLORING.

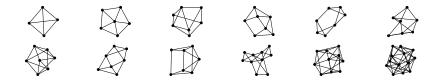
Coloring 000	Critical Graphs ●00	(P_5, gem) -free	(P_5, C_5) -free	Conclusion 00

- A graph G is k-critical if G is not (k-1)-colorable, but every induced subgraph of G is.
- Every graph that is not k-colorable has a (k + 1)-critical induced subgraph.

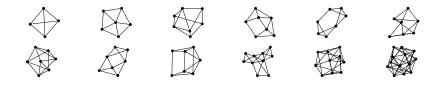
Certificate: Return a (k + 1)-critical induced subgraph of the input graph to certify negative answers to k-COLORING.

Issue: For $k \geq 3$ there are infinitely many k-critical graphs.

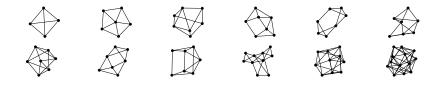
Coloring 000	Critical Graphs $0 \bullet 0$	(P_5, gem) -free	(P_5, C_5) -free	$\begin{array}{c} {\rm Conclusion} \\ {\rm oo} \end{array}$



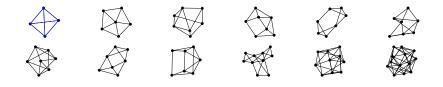
Coloring 000	Critical Graphs $0 = 0$	(P_5, C_5) -free	Conclusion oo



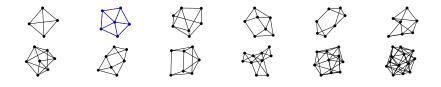
Coloring 000	Critical Graphs $0 \bullet 0$	(P_5, gem) -free	(P_5, C_5) -free	Conclusion 00



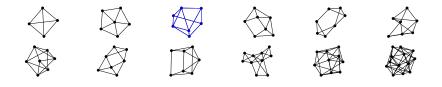
Coloring 000	Critical Graphs $0 \bullet 0$	(P_5, gem) -free	(P_5, C_5) -free	Conclusion 00



Coloring 000	Critical Graphs $0 \bullet 0$	(P_5, gem) -free	(P_5, C_5) -free	Conclusion 00



Coloring 000	Critical Graphs $0 \bullet 0$	(P_5, gem) -free	(P_5, C_5) -free	Conclusion 00



Coloring 000	Critical Graphs $0 \bullet 0$	(P_5, gem) -free	(P_5, C_5) -free	Conclus 00

Coloring 000	Critical Graphs 000	(P_5, gem) -free	(P_5, C_5) -free	$\begin{array}{c} {\rm Conclusion}\\ {\rm oo} \end{array}$

Question: Are there only finitely many k-critical P_5 -free graphs for all k?

Question: Are there only finitely many k-critical P_5 -free graphs for all k? NO!

Theorem (Hoàng et al. 2015): There are infinitely many k-critical $2P_2$ -free graphs for all $k \geq 5$.

$(\bullet \bullet \bullet \bullet \bullet)$

Question: Are there only finitely many k-critical P_5 -free graphs for all k? NO!

Theorem (Hoàng et al. 2015): There are infinitely many k-critical $2P_2$ -free graphs for all $k \geq 5$.

 $(\bullet \bullet \bullet \bullet \bullet)$

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Question 2: For which graphs H are there infinitely many k-critical (P_5, H) -free graphs for all k?

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Theorem (K. Cameron-Goedgebeur-Huang-Shi 2021): For H order 4 and $k \ge 5$, there are infinitely many k-critical (P_5, H) -free graphs if and only if H is $2P_2$ or $K_3 + P_1$.

Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Theorem (K. Cameron-Goedgebeur-Huang-Shi 2021): For H order 4 and $k \ge 5$, there are infinitely many k-critical (P_5, H) -free graphs if and only if H is $2P_2$ or $K_3 + P_1$.

Also finite if H is any from the list below:

- banner $P_3 + 2P_1$
- $K_{2,3}$ or $K_{1,4}$ $\overline{P_5}$
- $P_2 + 3P_1$

• $\overline{P_3 + P_2}$ or gem

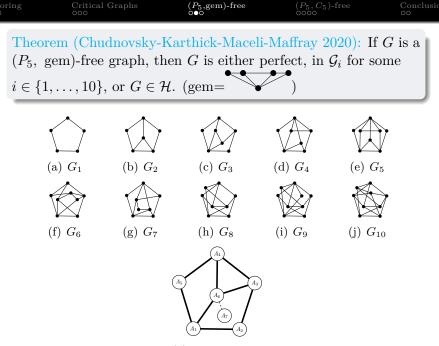
Question 1: For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Theorem (K. Cameron-Goedgebeur-Huang-Shi 2021): For H order 4 and $k \ge 5$, there are infinitely many k-critical (P_5, H) -free graphs if and only if H is $2P_2$ or $K_3 + P_1$.

Also finite if H is any from the list below:

- banner (Brause-Geißer-Schiermeyer 2022)
- $K_{2,3}$ or $K_{1,4}$ (Kamiński-Pstrucha 2019)
- $P_2 + 3P_1$ (C.-Hoàng-Sawada 2022)

- $P_3 + 2P_1$ (Abuadas-C.-Hoàng-Sawada 2023+)
- $\overline{P_5}$ (Dhaliwal et al. 2017)
- $\overline{P_3 + P_2}$ or gem (Cai-Goedgebeur-Huang 2023)



⁽k) Graphs in \mathcal{H}

Proof (Cai-Goedgebeur-Huang 2023): If G is a k-critical $(P_5, \text{ gem})$ -free graph, then $|G| \leq 5k + 2^{2k^2} + 2^{2^{2k^2}}$

Proof (Cai-Goedgebeur-Huang 2023): If G is a k-critical $(P_5, \text{ gem})$ -free graph, then $|G| \leq 5k + 2^{2k^2} + 2^{2^{2k^2}} > 10^{78914}$.

Proof (Cai-Goedgebeur-Huang 2023): If G is a k-critical (P₅, gem)-free graph, then $|G| \leq 5k + 2^{2k^2} + 2^{2^{2k^2}} > 10^{78914}$.

Proof (C.-Hoàng 2023): If G is a k-critical (P_5 , gem)-free graph, then $G \notin \mathcal{H}$ and $|G| \leq (k-2)^9$.

Theorem (Cai-Goedgebeur-Huang 2023): There are only finitely many k-critical (P_5 , gem)-free graphs for all k.

Proof (Cai-Goedgebeur-Huang 2023): If G is a k-critical $(P_5, \text{ gem})$ -free graph, then $|G| \leq 5k + 2^{2k^2} + 2^{2^{2k^2}} > 10^{78914}$.

Proof (C.-Hoàng 2023): If G is a k-critical (P_5 , gem)-free graph, then $G \notin \mathcal{H}$ and $|G| \leq (k-2)^9$.

The number of k-critical $(P_5, \text{ gem})$ -free graph is exactly:

- 3 when k = 4
- 7 when k = 5

(Cai-Goedgebeur-Huang 2023)

(Cai-Goedgebeur-Huang 2023)

Theorem (Cai-Goedgebeur-Huang 2023): There are only finitely many k-critical (P_5 , gem)-free graphs for all k.

Proof (Cai-Goedgebeur-Huang 2023): If G is a k-critical (P₅, gem)-free graph, then $|G| \leq 5k + 2^{2k^2} + 2^{2^{2k^2}} > 10^{78914}$.

Proof (C.-Hoàng 2023): If G is a k-critical (P_5 , gem)-free graph, then $G \notin \mathcal{H}$ and $|G| \leq (k-2)^9$.

The number of k-critical $(P_5, \text{ gem})$ -free graph is exactly:

- 3 when k = 4
- 7 when k = 5
- 19 when k = 6
- 46 when k = 7

- (Cai-Goedgebeur-Huang 2023)
- (Cai-Goedgebeur-Huang 2023)
 - (C.-Hoàng 2023)
 - (C.-Hoàng 2023)

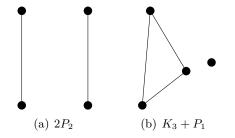
Coloring 000 Critical Graphs 000 (P_5, gem) -free

 (P_5, C_5) -free \bullet 000 Conclusion 00

Question 2: For which graphs H are there infinitely many k-critical (P_5, H) -free graphs for all k?

Question 2: For which graphs H are there infinitely many k-critical (P_5, H) -free graphs for all k?

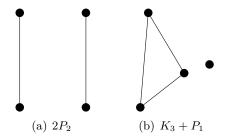
Theorem (Hoàng et al. 2015): There are infinitely many k-critical $(2P_2, K_3 + P_1)$ -free graphs for all $k \ge 5$.



Question 2: For which graphs H are there infinitely many k-critical (P_5, H) -free graphs for all k?

Theorem (Hoàng et al. 2015): There are infinitely many k-critical $(2P_2, K_3 + P_1)$ -free graphs for all $k \ge 5$.

Theorem (Chudnovsky-Goedgebeur-Schaudt-Zhong 2020): There are infinitely many k-critical P_7 -free for all $k \ge 4$.



Coloring	Critical Graphs	(P_5, gem) -free	(P_5, C_5) -free	Conclusion
000	000		$0 \bullet 00$	00

Coloring 000	Critical Graphs 000	(P_5, gem) -free	(P_5, C_5) -free $0 \bullet 00$	Conclusion 00

Simple Observations:

- If G is k-critical and perfect, then $G = K_k$.
- Every P_5 -free graph is also C_{2k+1} -free for all $k \geq 3$.

Coloring 000	Critical Graphs 000	(P_5, gem) -free	(P_5, C_5) -free $0 \bullet 00$	Conclusion 00

Simple Observations:

- If G is k-critical and perfect, then $G = K_k$.
- Every P_5 -free graph is also C_{2k+1} -free for all $k \geq 3$.

Question: How many k-critical (P_5, C_5) -free graphs are there?

Coloring 000	Critical Graphs 000	(P_5, gem) -free	(P_5, C_5) -free $0 \bullet 00$	$\begin{array}{c} \mathrm{Conclusion}\\ \mathrm{OO} \end{array}$

Simple Observations:

- If G is k-critical and perfect, then $G = K_k$.
- Every P_5 -free graph is also C_{2k+1} -free for all $k \geq 3$.

Question: How many k-critical (P_5, C_5) -free graphs are there?

Theorem (Hoàng et al. 2015): There are only finitely many many 5-critical (P_5, C_5) -free graphs. (In fact, exactly 13)

Coloring 000		(P_5, gem) -free	(P_5, C_5) -free $\circ \circ \circ \circ \circ$	$\begin{array}{c} {\rm Conclusion} \\ {\rm oo} \end{array}$
	,			

Theorem (C.-Hoàng 2023+): G(q, k-1) is k-critical (P_5, C_5) -free graphs for all $q \ge 1$ and $k \ge 6$. Thus, there are infinitely many such graphs.

Coloring Critical Graphs (P_5, gem) -free (P_5, C_5) -free Conclusion 000 000 000 000 000 000 00

Theorem (C.-Hoàng 2023+): G(q, k-1) is k-critical (P_5, C_5) -free graphs for all $q \ge 1$ and $k \ge 6$. Thus, there are infinitely many such graphs.

Let G(q, k) be a graph on vertex set $\{v_0, v_1, ..., v_{kq}\}$ with

$$N(v_i) = \{v_{i-1}, v_{i+1}\} \cup \{v_{i+kj+m} : m = 2, 3, \dots k-1 \text{ and } j = 0, 1, \dots, q-1\}$$

Theorem (C.-Hoàng 2023+): G(q, k-1) is k-critical (P_5, C_5) -free graphs for all $q \ge 1$ and $k \ge 6$. Thus, there are infinitely many such graphs.

Let G(q, k) be a graph on vertex set $\{v_0, v_1, ..., v_{kq}\}$ with

$$N(v_i) = \{v_{i-1}, v_{i+1}\} \cup \{v_{i+kj+m} : m = 2, 3, \dots k-1 \text{ and } j = 0, 1, \dots, q-1\}$$

where each index is taken modulo kq + 1.

• When $q = 1, G(q, k) = K_{k+1}$

Coloring Critical Graphs (P_5, gem) -free (P_5, C_5) -free Conclusion 000 000 000 000 000 000 00

Theorem (C.-Hoàng 2023+): G(q, k-1) is k-critical (P_5, C_5) -free graphs for all $q \ge 1$ and $k \ge 6$. Thus, there are infinitely many such graphs.

Let G(q, k) be a graph on vertex set $\{v_0, v_1, ..., v_{kq}\}$ with

$$N(v_i) = \{v_{i-1}, v_{i+1}\} \cup \{v_{i+kj+m} : m = 2, 3, \dots k-1 \text{ and } j = 0, 1, \dots, q-1\}$$

- When $q = 1, G(q, k) = K_{k+1}$
- When q = 2, $G(q, k) = \overline{C_{2k+1}}$

Theorem (C.-Hoàng 2023+): G(q, k-1) is k-critical (P_5, C_5) -free graphs for all $q \ge 1$ and $k \ge 6$. Thus, there are infinitely many such graphs.

Let G(q, k) be a graph on vertex set $\{v_0, v_1, ..., v_{kq}\}$ with

$$N(v_i) = \{v_{i-1}, v_{i+1}\} \cup \{v_{i+kj+m} : m = 2, 3, \dots k-1 \text{ and } j = 0, 1, \dots, q-1\}$$

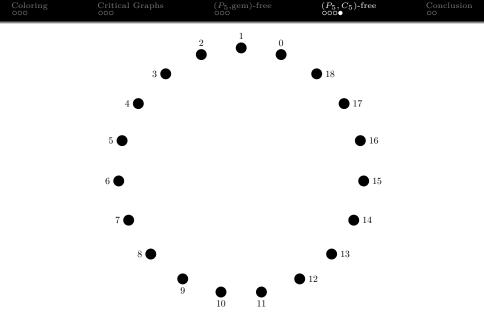
- When $q = 1, G(q, k) = K_{k+1}$
- When q = 2, $G(q, k) = \overline{C_{2k+1}}$
- When k = 3, $G(r, k) = G_r$ from Chudnovsky et al.'s 4-critical P_7 -free family.

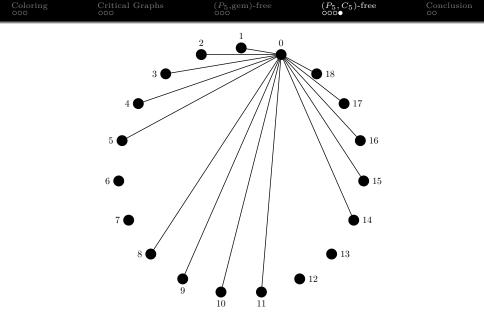
Theorem (C.-Hoàng 2023+): G(q, k-1) is k-critical (P_5, C_5) -free graphs for all $q \ge 1$ and $k \ge 6$. Thus, there are infinitely many such graphs.

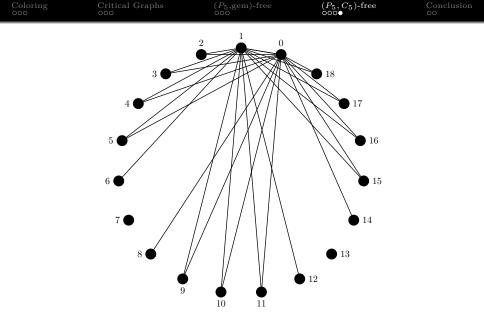
Let G(q, k) be a graph on vertex set $\{v_0, v_1, ..., v_{kq}\}$ with

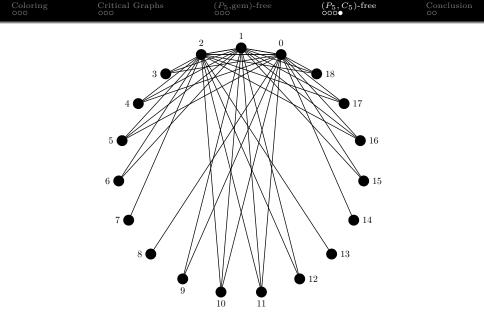
$$N(v_i) = \{v_{i-1}, v_{i+1}\} \cup \{v_{i+kj+m} : m = 2, 3, \dots k-1 \text{ and } j = 0, 1, \dots, q-1\}$$

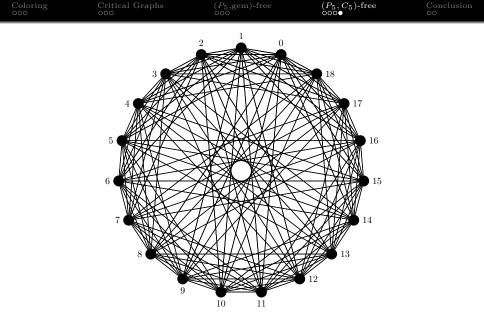
- When $q = 1, G(q, k) = K_{k+1}$
- When q = 2, $G(q, k) = \overline{C_{2k+1}}$
- When k = 3, $G(r, k) = G_r$ from Chudnovsky et al.'s 4-critical P_7 -free family.
- When k = 4, $G(p, k) = G_p$, from Hoàng et al.'s 5-critical P_5 -free family.

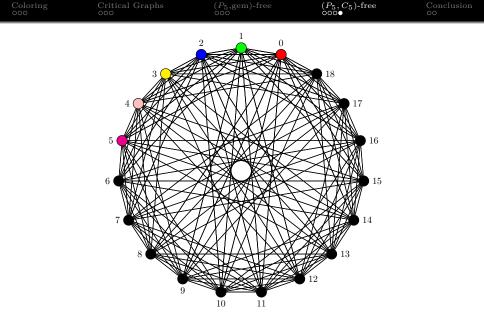


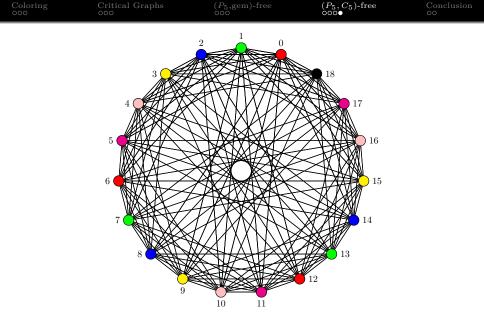


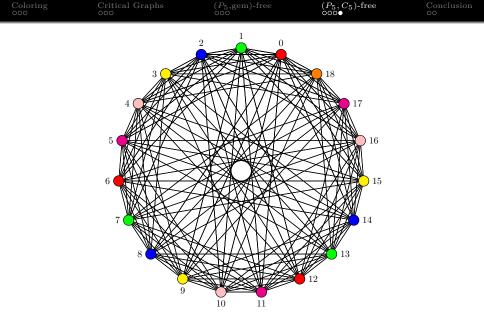












Coloring 000	Critical Graphs 000	(P_5, gem) -free	(P_5, C_5) -free	$\begin{array}{c} \text{Conclusion} \\ \bullet \circ \end{array}$

In fact, G(q, k - 1) is actually $(2P_2, K_3 + P_1, C_5)$ -free for all $k \ge 6$.

Coloring 000	Critical Graphs 000	(P_5, gem) -free	(P_5, C_5) -free	Conclusion •0

In fact, G(q, k - 1) is actually $(2P_2, K_3 + P_1, C_5)$ -free for all $k \ge 6$.

Question For which graphs H are there only finitely many k-critical $(2P_2, K_3 + P_1, C_5, H)$ -free graphs for all k?

Question For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

Question For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

When H is order 5, only unknown for following graphs:

- $\operatorname{claw}+P_1$
- $P_4 + P_1$
- chair (known k = 5)
- $\overline{\text{diamond} + P_1}$

- $C_4 + P_1$
- bull (known k = 5)
- $\bullet~{\rm dart}$
- $\overline{K_3 + 2P_1}$

- $\overline{P_3 + 2P_1}$
- W₄
- $K_5 e$
- K₅

Coloring 000 Critical Graphs 000 (P_5, gem) -free

 (P_5, C_5) -free

Question For which graphs H are there only finitely many k-critical (P_5, H) -free graphs for all k?

When H is order 5, only unknown for following graphs:

• $claw+P_1$ • P_4+P_1 • chair (known k=5)• $diamond + P_1$ • $K_3 + 2P_1$ • W_4 • W_4 • $K_5 - e$ • K_5 • K_5

Figure: Scan QR code for (P_5, gem) -free paper. Thanks to NSERC!