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1 Introduction

The Clifford + T gate set can used to logically
implement any quantum gate, either exactly or to
an arbitrary degree of accuracy. The physical im-
plementation of the T gate represents a significant
resource cost compared to those of the Cliffords,
particularly in the context of fault-tolerant com-
puting. Therefore, it is of interest to minimize the
T-count, defined as the number of T gates used in
the implementation of a particular gate or family of
gates. If one is concerned with time costs in partic-
ular, then they may instead consider the T-count,
defined as the number of T gates up to paralleliza-
tion. 1 focused on the T-count for my research.

An important gate family is the C*-NOT gates.
The effect of one of these gates is to flip the target
qubit from |0) to |1) (or vice versa) if all n control
bits are in the [1) state. Figure [l| depicts a gen-
eralized version for n qubits. C"-NOT gates have
analogues in reversible classical computing, so they
are used to implement reversible classical functions
in the quantum context. Thus, it is useful to reduce
the T-count for these gates.

This was the goal of my project. In particular,
I focused on what optimizations could be made by
using measurements. I focus on measurement be-
cause it has allowed for notable constructions of the
C™-NOT family within the past decade — specifi-
cally, a Toffoli construction with T-count 4, which
extends to a C™-NOT construction with T-count
4n — 4; and a C3-NOT construction with T-count
6, which further reduces the C"-NOT T-count to
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Figure 1: A C"-NOT gate. The product cjc2...cp, is added
to the target qubit state, modulo 2. Gates of this type
are used to implement classical reversible functions in the
quantum context.

4n — 6. I have studied these circuits to gain in-
sight as to how they work, based on which I have
attempted to find further reductions. This report
details what I have learned while doing so.

2 Reducing T-count of the
Toffoli from 7 to 4

We first consider advancements that brought the
T-count for the Toffoli from 7 to 4. In 2012,
Selinger [10] published a doubly-controlled —iX
circuit that uses 4 T gates (Fig. [2). This circuit
achieves the effect of a Toffoli, except it also con-
tributes a global phase of -i if the target qubit is
flipped. Jones’ circuit (Fig. [3) [7] realizes a true
Toffoli by using Selinger’s gate to target an ancilla,
correcting the phase with an S gate, then copying
the c1co product to the target input qubit. The an-
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Figure 2: Selinger’s [10] doubly-controlled —iX gate, implemented with 4 T gates. This gate achieves the effect of a Toffoli
and contributes a global phase of ¢ to the target qubit if both controls are |1).
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Figure 3: Jones’ [7] Toffoli circuit, implemented with 4 T
gates. It works by 1.) targeting an ancilla with a doubly-
controlled —iX gate, then correcting the i phase with an S
gate; 2.) XORing the cica product onto the target qubit
with a CNOT; then 3.) uncomputing the ancilla with a
Hadamard and measurement-controlled CZ gate.

cilla is then uncomputed by a Hadamard followed
by a measurement-controlled CZ gate on the con-
trol qubits. By measuring the ancilla, the uncom-
putation step achieves the effect of a second Toffoli
without contributing to the circuit’s T-count. This
can be seen by deferring the measurement past the
control and introducing a second Hadamard just
before measurement.

The combination of Selinger and Jones’ contribu-
tions allows the implementation of the Toffoli with
only 4 T gates. This count is minimal as shown
by Jiang and Wang [6], who used the stabilizer ex-
tent monotone to establish a lower bound on the
T-count for CCZ—and by extension, the Toffoli (I
round up from their value of 3.6349 to the near-
est whole number). Before Jones’ circuit, the prior
upper bound for the Toffoli T-count was 7. Inter-
estingly, Gosset et al. [5] showed that this count is
minimal when ancillas and measurements are dis-
allowed. Therefore, we have seen an example in

which measurement allows for an optimization that
may not have been otherwise possible.

We will now establish an initial upper bound on
the T-count for C*"-NOT by providing a circuit. We
stand at a reasonable starting point, as we can con-
struct C"-NOT entirely of Toffolis (since the Toffoli
is universal for reversible classical computing), and
we have a T-count for the Toffoli that is in some
sense minimal.

The following are circuits for 3 and 4 controls,
respectively:
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Generalizing this pattern, a circuit for n controls
requires 2n — 3 Toffolis. At 4 T gates per Toffoli,
we obtain an upper bound on the C"*-NOT T-count
of 8n — 12. This count is already favorable, as it
only grows linearly as controls are added.



Furthermore, Gidney’s ”temporary logical-
AND” construction [3] allows this count to be re-
duced by almost half. His construction (Fig. W)
hinges on his observation that the uncomputation
step from Jones’ Toffoli can be delayed, allowing
the cyco ancilla to be used for computations else-
where before being returned to |0). Gidney extends
this idea to C"-NOT by modifying the previous
circuit pattern to produce the following (demon-
strated with 4 controls):
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Each pair of Toffolis on the same wires from the
previous circuit is replaced by a temporary logical-
AND. Since each logical-AND can be computed
and uncomputed for the T-count of only one Tof-
foli, we effectively almost half the T-count of the
entire circuit (the ”almost” comes from fact that
the central Toffoli on the target qubit remains
from the previous construction). Precisely, the new
count is 4 T times n — 1 Toffolis for 4n — 4 T.

3 C3-NOT with 6 T gates

In 2021, Gidney and Jones [4] published a 6-
T C3Z circuit. By conjugating the circuit with
Hadamards on the desired qubit, we obtain a 6-
T C3-NOT. We thus save 2 T from the previ-
ous state-of-the-art C3-NOT circuit, which was ob-
tained from the general C™-NOT construction us-
ing temporary ANDs. This new T-count coincides
with the lower bound calculated by [6] for C3Z via
the stabilizer extent monotone, so the count is min-
imal (again, I round up from their value of 5.1226).
There does not seem to be an obvious way to pro-

duce a delayed uncomputation step, a la Jones’ Tof-
foli.
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Figure 4: Gidney’s [3] 4-T ” Temporary logical-AND” con-
struction, consisting of two circuits extended from Jones’
Toffoli [7]. The first circuit computes the product cica onto
an ancilla, and the second circuit uncomputes it. The prod-
uct can be copied from the wire between the two circuits
and used for other computations.

Furthermore, Gidney and Jones noted that their
C3-NOT circuit also reduces the overall C*-NOT
from 4n—4 to 4n—6, since C3-NOT can replace the
central Toffoli and the adjacent temporary AND.
This brings us to the state-of-the-art count for C"-
NOT.

4 Attempts at further T-

count reduction

I have attempted to further reduce the T-count
for C™-NOT, though I have not been successful at
the time of writing. Approaches I have tried in-
clude:

e Extending the C3Z circuit to more controls /
finding other ways to nest it in the C*-NOT
circuit. Like Gidney and Jones, I could not
find a circuit with a lower T-count than the
state-of-the-art.

e Connecting multiple 4-T Toffolis on the same
wire to cause T gate cancellations—also in-
spired by the C3Z circuit. I did not find a



way to use this trick that produces a useful
circuit.

e Using T gates to produce global w-phases that
simplify to —1. This approach is motivated by
Selinger’s explanation of his CC(—iZ) circuit.
I could not find a way to extend it to more
than two controls.

5 Other potential approaches

7ZX calculus has been used in prior research to
make T-count optimizations to C"-NOT, so per-
haps this area could provide more insight. Exam-
ples are [§] and [2].

It may also be interesting to investigate lower
bounds on the T-count in order to quantify how
much further this metric can be optimized. Rai [9]
has established lower bounds of n + 1 and 2n — 2
using the stabilizer nullity and dyadic monotones,
respectively. The latter bound assumes that any
measurements have 1/2 probability. Rai identifies
the unitary stabilizer nullity [6] and stabilizer ex-
tent [1] as other monotones that could be investi-
gated.
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