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1 Introduction

The Cli↵ord + T gate set can used to logically
implement any quantum gate, either exactly or to
an arbitrary degree of accuracy. The physical im-
plementation of the T gate represents a significant
resource cost compared to those of the Cli↵ords,
particularly in the context of fault-tolerant com-
puting. Therefore, it is of interest to minimize the
T-count, defined as the number of T gates used in
the implementation of a particular gate or family of
gates. If one is concerned with time costs in partic-
ular, then they may instead consider the T-count,
defined as the number of T gates up to paralleliza-
tion. I focused on the T-count for my research.
An important gate family is the Cn-NOT gates.

The e↵ect of one of these gates is to flip the target
qubit from |0i to |1i (or vice versa) if all n control
bits are in the |1i state. Figure 1 depicts a gen-
eralized version for n qubits. Cn-NOT gates have
analogues in reversible classical computing, so they
are used to implement reversible classical functions
in the quantum context. Thus, it is useful to reduce
the T-count for these gates.
This was the goal of my project. In particular,

I focused on what optimizations could be made by
using measurements. I focus on measurement be-
cause it has allowed for notable constructions of the
Cn-NOT family within the past decade — specifi-
cally, a To↵oli construction with T-count 4, which
extends to a Cn-NOT construction with T-count
4n � 4; and a C3-NOT construction with T-count
6, which further reduces the Cn-NOT T-count to

|c1i • |c1i
|c2i • |c2i

...

|cni • |cni
|ti |t� c1c2...cni

Figure 1: A Cn-NOT gate. The product c1c2...cn is added
to the target qubit state, modulo 2. Gates of this type
are used to implement classical reversible functions in the
quantum context.

4n � 6. I have studied these circuits to gain in-
sight as to how they work, based on which I have
attempted to find further reductions. This report
details what I have learned while doing so.

2 Reducing T-count of the

To↵oli from 7 to 4

We first consider advancements that brought the
T-count for the To↵oli from 7 to 4. In 2012,
Selinger [10] published a doubly-controlled �ı̇X

circuit that uses 4 T gates (Fig. 2). This circuit
achieves the e↵ect of a To↵oli, except it also con-
tributes a global phase of -ı̇ if the target qubit is
flipped. Jones’ circuit (Fig. 3) [7] realizes a true
To↵oli by using Selinger’s gate to target an ancilla,
correcting the phase with an S gate, then copying
the c1c2 product to the target input qubit. The an-
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• |c1i • T
† • |c1i

• = |c2i • T
† • |c2i

�ı̇X |ti H • • T • • H |t� c1c2i

|0i T |0i

Figure 2: Selinger’s [10] doubly-controlled �ı̇X gate, implemented with 4 T gates. This gate achieves the e↵ect of a To↵oli
and contributes a global phase of ı̇ to the target qubit if both controls are |1i.

• |c1i • • |c1i

• |c2i • Z |c2i

= |0i �ı̇X S • H

|ti |t� c1c2i

Figure 3: Jones’ [7] To↵oli circuit, implemented with 4 T
gates. It works by 1.) targeting an ancilla with a doubly-
controlled �ı̇X gate, then correcting the ı̇ phase with an S
gate; 2.) XORing the c1c2 product onto the target qubit
with a CNOT; then 3.) uncomputing the ancilla with a
Hadamard and measurement-controlled CZ gate.

cilla is then uncomputed by a Hadamard followed
by a measurement-controlled CZ gate on the con-
trol qubits. By measuring the ancilla, the uncom-
putation step achieves the e↵ect of a second To↵oli
without contributing to the circuit’s T-count. This
can be seen by deferring the measurement past the
control and introducing a second Hadamard just
before measurement.
The combination of Selinger and Jones’ contribu-

tions allows the implementation of the To↵oli with
only 4 T gates. This count is minimal as shown
by Jiang and Wang [6], who used the stabilizer ex-
tent monotone to establish a lower bound on the
T-count for CCZ—and by extension, the To↵oli (I
round up from their value of 3.6349 to the near-
est whole number). Before Jones’ circuit, the prior
upper bound for the To↵oli T-count was 7. Inter-
estingly, Gosset et al. [5] showed that this count is
minimal when ancillas and measurements are dis-
allowed. Therefore, we have seen an example in

which measurement allows for an optimization that
may not have been otherwise possible.

We will now establish an initial upper bound on
the T-count for Cn-NOT by providing a circuit. We
stand at a reasonable starting point, as we can con-
struct Cn-NOT entirely of To↵olis (since the To↵oli
is universal for reversible classical computing), and
we have a T-count for the To↵oli that is in some
sense minimal.

The following are circuits for 3 and 4 controls,
respectively:

C3-NOT
|c1i • • |c1i
|c2i • • |c2i
|c3i • |c3i
|0i • |0i

|ti |t� c1c2c3i

C4-NOT|c1i • • |c1i
|c2i • • |c2i
|c3i • • |c3i
|c4i • |c4i
|0i • • |0i
|0i • |0i
|ti |t� c1c2c3c4i

Generalizing this pattern, a circuit for n controls
requires 2n � 3 To↵olis. At 4 T gates per To↵oli,
we obtain an upper bound on the Cn-NOT T-count
of 8n � 12. This count is already favorable, as it
only grows linearly as controls are added.
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Furthermore, Gidney’s ”temporary logical-
AND” construction [3] allows this count to be re-
duced by almost half. His construction (Fig. 4)
hinges on his observation that the uncomputation
step from Jones’ To↵oli can be delayed, allowing
the c1c2 ancilla to be used for computations else-
where before being returned to |0i. Gidney extends
this idea to Cn-NOT by modifying the previous
circuit pattern to produce the following (demon-
strated with 4 controls):

C4-NOT
|c1i • • |c1i
|c2i • • |c2i
|c3i • • |c3i
|c4i • |c4i

• •
•

|ti |t� c1c2c3c4i

Each pair of To↵olis on the same wires from the
previous circuit is replaced by a temporary logical-
AND. Since each logical-AND can be computed
and uncomputed for the T-count of only one Tof-
foli, we e↵ectively almost half the T-count of the
entire circuit (the ”almost” comes from fact that
the central To↵oli on the target qubit remains
from the previous construction). Precisely, the new
count is 4 T times n� 1 To↵olis for 4n� 4 T.

3 C
3
-NOT with 6 T gates

In 2021, Gidney and Jones [4] published a 6-
T C3Z circuit. By conjugating the circuit with
Hadamards on the desired qubit, we obtain a 6-
T C3-NOT. We thus save 2 T from the previ-
ous state-of-the-art C3-NOT circuit, which was ob-
tained from the general Cn-NOT construction us-
ing temporary ANDs. This new T-count coincides
with the lower bound calculated by [6] for C3Z via
the stabilizer extent monotone, so the count is min-
imal (again, I round up from their value of 5.1226).
There does not seem to be an obvious way to pro-
duce a delayed uncomputation step, a la Jones’ Tof-
foli.

Initialize c1c2

|c1i • |c1i |c1i • |c1i
|c1i • |c2i = |c2i • |c2i

|c1c2i |0i �ı̇X S |c1c2i

Uncompute c1c2

|c1i • |c1i |c1i • |c1i

|c1i • |c2i = |c2i Z |c2i

|c1c2i |c1c2i H

Figure 4: Gidney’s [3] 4-T ”Temporary logical-AND” con-
struction, consisting of two circuits extended from Jones’
To↵oli [7]. The first circuit computes the product c1c2 onto
an ancilla, and the second circuit uncomputes it. The prod-
uct can be copied from the wire between the two circuits
and used for other computations.

Furthermore, Gidney and Jones noted that their
C3-NOT circuit also reduces the overall Cn-NOT
from 4n�4 to 4n�6, since C3-NOT can replace the
central To↵oli and the adjacent temporary AND.
This brings us to the state-of-the-art count for Cn-
NOT.

4 Attempts at further T-

count reduction

I have attempted to further reduce the T-count
for Cn-NOT, though I have not been successful at
the time of writing. Approaches I have tried in-
clude:

• Extending the C3Z circuit to more controls /
finding other ways to nest it in the Cn-NOT
circuit. Like Gidney and Jones, I could not
find a circuit with a lower T-count than the
state-of-the-art.

• Connecting multiple 4-T To↵olis on the same
wire to cause T gate cancellations—also in-
spired by the C3Z circuit. I did not find a
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way to use this trick that produces a useful
circuit.

• Using T gates to produce global !-phases that
simplify to �1. This approach is motivated by
Selinger’s explanation of his CC(�ı̇Z) circuit.
I could not find a way to extend it to more
than two controls.

5 Other potential approaches

ZX calculus has been used in prior research to
make T-count optimizations to Cn-NOT, so per-
haps this area could provide more insight. Exam-
ples are [8] and [2].
It may also be interesting to investigate lower

bounds on the T-count in order to quantify how
much further this metric can be optimized. Rai [9]
has established lower bounds of n + 1 and 2n � 2
using the stabilizer nullity and dyadic monotones,
respectively. The latter bound assumes that any
measurements have 1/2 probability. Rai identifies
the unitary stabilizer nullity [6] and stabilizer ex-
tent [1] as other monotones that could be investi-
gated.
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