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I. INTRODUCTION

It has been recently determined [1] that the appropriate frame h%, and spin connection wy, ansatz con-

taining the minimum number of arbitrary functions is of the form

Al(t, ’I")
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0
0
and
w34t = _atX7

w’3y = cosh(y) cos(x),

w’3 = cosh(y) sin(x) sin(6),
wly = e,

w'sy = —sinh(y) cos(x),

w'y, = —sinh(¢) sin(x) sin(6),

w34¢ = —cos(6).

where x = x(t,7) and ¢ = (¢, r) are arbitrary functions. The coordinates are a* = [t,, 0, ¢).
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Wiy = _arXa

w?, = cosh(1) cos(x) sin(0)
w?jp = — cosh() sin(x)

why, = 0,9,

w'yy = —sinh(¢) cos(x) sin(f),

w3y = sinh(¥) sin(x)

The spin connection W, is defined in terms of an arbitrary Lorentz transformation A% through the

equation

a

Wy,

= (A7)0, (A%).
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So we end up with a linear system of PDEs for each u = [t,7,0, ¢]. In matrix format, if we let W, be the

matrix having entries Wy then the PDEs can be expressed as

We want to know the value of the matrix A.

9,A = AW,



II. SPIN CONNECTION AND THE PROPER FRAME

Let the matrix A hold the components A%=A%(t,r, ¢,0). We construct (10) for u = [t,r,0, ¢] using W), and

A. The null curvature condition must hold.

Wy — 0, W, + W, W, — W, W, =0

(11)

The A that generates the most general spherically symmetric spin connection includes a constant, non-

singular matrix factor, C which is multiplied by three rotations and one boost in the following construction.

Where
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As of now, the functions defining the spin connection, ¥ (t,r) and x(t,r) are arbitrary but may be chosen

to generate a A with particular properties, certain values for ¥(t,r) and x(¢,7) alter or nullify the other

rotations and boosts. For example we can choose A so that the anti-symmetric part of the covariant f(7')

field equations is satisfied given the proper frame, h®. The general solution will be shown where C = 1.
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If we wish to move from the diagonal frame

ha

(15)

to the proper spherically symmetric co-frame for a general teleparallel geometry, we can compute

which will take the following form, up to a constant, non-singular matrix factor

h® =

h* = A%h"

Ay (t,r)cosh(y)dt + As(t, ) sinh(¢)dr

Ay (t,7) sinh(¢)dt cos(8) + Aa(t, ) cosh()dr cos(6) + As(t, ) cos(x)dO sin(h) — As(t,r)sin(x)desin?(6)
— A (t,r)sinh(¢)) cos(p)dt sin(0) — Aa(t, r) cosh(vp)dr cos(¢) sin(@) + As(t,r)d0(cos(0) cos(¢) cos(x) — sin(¢) sin(x)) — As(t,r) sin(0)d¢(cos(¢) cos(8) sin(x) + sin(¢) cos(x))

| —Au(t,7) sinh(¢)dt sin(¢) sin(6) — Az(t, ) cosh(1p)dr sin(¢) sin(6) + As(¢,r)d6(cos(0) sin(¢) cos(x) + cos(¢) sin(x)) + As(t,r) sin(0)d¢(— cos(6) sin(¢) sin(x) + cos(¢) cos(x)) |

where the co-frame components are

A (t,r) cosh(v)

Ay (t,r)cos() sinh (1))
he, =

As(t,r)sinh(¢) 0

As(t, r) cosh(v)) cos(8) As(t, r) cos(x) sin(0)

—Aq(t,r)sin(f) cos(¢) sinh(v)) —Aa(t,7) cos(d) sin(0) cosh(vp)  Az(t, r)(cos(f) cos(¢) cos(x) — sin(¢) sin(x))

| —Au(t, ) sin(¢) sin(0) sinh(v))  —Ax(t, ) sin(¢) sin(0) cosh(¢))  As(t, r)(cos(0) sin(¢) cos(x) + cos(¢) sin(x))

—Ag(t,7) sin?(0) sin(x)

—As(t,r)sin(0)(cos(¢) cos(8) sin(x) + sin(¢) cos(x))

As(t,r)sin(0)(— cos(0) sin(¢) sin(x) + cos(¢) cos(x))

We describe the proper co-frame with 5 arbitrary functions of t and r. Another approach to the same problem

has been taken by Hohmann et al. [2] .

_ o
- C3sin(f) cos(¢)
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C5sin(¢) sin(6)
C3 cos(0)
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Cycos(¢p)sin(f) Cscos(d) cos(¢p) — Cgsin(¢p) —sin(8)(Cs sin(¢) + Cg cos(0) cos(¢))
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Cy cos(0) —C5 sin(6)

0

Cg sin?()

We will show that their solution is the same as our own, up to a constant matrix factor.




The six functions C; = C;(¢,7) (i =1,...,6) can depend on time and the radial coordinate.

The line element in [2] is
ds® = —(C? — C2)dt* 4 2(C3Cy — C1Co)dtdr + (CF — C2)dr? 4 (C2 4 C2)dN?

where dQ? = (d6? + sin®(0)d¢?).

New coordinates can be chosen so that C1Cs — C3Cy = 0, which reduces Hohmann’s number of arbitrary
functions to 5. We start by comparing the line elements to solve for C;(¢,7) in terms of our five arbitrary
functions Ay (t,7), As(t,r), As(t,r), ¥(t,r), x(t,7) so that Hohmann’s metric will match ours, we will then

find a constant matrix factor, Aj which relates the two solutions.
ds? = —A2(t,r)dt* + AZ(t,r)dr® + AZ(t,r)d6? 4 A3(t,r)sin?(0)d¢?
we find the following constraints,
CP—C5 =Aj(t,r), C3C,—C1Cy =0, C;—C3=A5(tr), C2+C;=A5r)

It is now rather straight forward to solve for C;(¢,r),

Cy = Ay (t,r)cosh(yp) Co = Aa(t,r)sinh(y) Cs = Ai(t,r)sinh(vp) Cyq = As(t,r)cosh(v))
Cs = —As(t,r)cos(x) Cg=—As(t,r)sin(x)

substituting C;(¢,r) into iLaﬂ we find,

Ay (t,r) cosh(v) As(t,r)sinh(v) 0 0

A1 (t,r) cos(8) sinh () As(t,r) cosh(v) cos(h) Ajs(t, r) cos(x) sin(9) — Ag(t,7)sin?(6) sin(x)

The metrics are now the same however the co-frame is slightly different. Recall we can multiply A by any
10 00
constant, non-singular matrix without any loss of generality. So, multiplying by the matrix A%, = (8 %3 (1))
00 -10
we arrive at the expression

ht, = A%R°, (17)

And so the same co-frame determined by Hohmann et al.[2] is equivalent to the proper frame which has been

computed from the general spherically symmetric geometry in [1].

Aq(t,r)sin(0) cos(¢) sinh(¢p)  Aa(t,7) cos(d) sin(0) cosh(v))  —As(t,7)(cos(x) cos(8) cos(p) — sin(x) sin(¢))  As(¢,7) sin(0)(cos(x) sin(¢) + sin(x) cos(8) cos(¢))

Ay (t,r)sin(¢) sin(@) sinh(p)  As(t, ) sin() sin(f) cosh(yp)  —As(t,7)(cos(x) cos(0) sin(¢) + sin(x) cos(¢)) —As(t,r)sin(f)(cos(x) cos(¢) — sin(x) cos(f) sin(¢))




III. NATURAL SUB-CASES

From a general spherically symmetric, teleparallel geometry there are two natural sub-cases which are of

some practical value. The isometry group of both sub-geometries is SO (3) x R .

e STATIC SUB-CASE
In the static sub-case each arbitrary function loses its dependence on t and we are left with a geometry which
is invariant under time translation, adding another dimension to the symmetry group. In this construction
it will be assumed that ¢ = ¢(r) and x = x(r). We can choose coordinates so that As(r) = r without any

loss of generality in the static sub-case.

ds? = —Af(r)dt* + A3(r)dr? + r2d6” + r? sin(0)d¢?

This is the general line element for a static spherically symmetric geometry, the co-frame becomes,

A (r) cosh(v)) Ay (r) sinh(¢)) 0 0

Aq (1) cos(8) sinh(¢)) As(r) cosh(vp) cos(8) rcos(x) sin(f) —rsin?(6) sin(x)
h?, =
—Aq(r)sin(0) cos(¢) sinh(yp)  —As(r) cos(¢) sin(f) cosh(ep) r(cos(8) cos(¢) cos(x) — sin(¢)sin(y)) —rsin(f)(cos(¢) cos(6) sin(x) + sin(¢) cos(x))

| —Ai1(r) sin(¢) sin(0) sinh(v))  —A(r) sin(4) sin(6) cosh(¥)  r(cos(9) sin(¢) cos(x) + cos(¢) sin(x)) sin(f)(— cos(9) sin() sin(x) + cos(¢) cos(x)) |

¢ KANTOWSKI-SACHS SUB-CASE

In the Kantowski-Sachs sub-case we use only arbitrary functions of the coordinate t, leading to a geometry
invariant under radial translations. It will be assumed in this scenario that ¢ = ¥ (t) and x = x(t). We can
choose coordinates such that A;(t) = 1 without any loss of generality here. With the substitution we reduce

to the standard line element for a general Kantowski-Sachs geometry.

ds® = —dt® + A3(t)dr® + A3(t)d0* + A3(t) sin®(0)d¢?

And the co-frame becomes

cosh(¢)) Aj(t) sinh(¢)) 0 0

cos(0) sinh (1)) Aj(t) cosh(y)) cos(0) As(t) cos(x) sin(6) — A3 (t) sin®(0) sin(x)
he, =
—sin(0) cos(¢) sinh(¢p)  —As(t) cos(p) sin(f) cosh(ep)  Az(t)(cos(8) cos(¢) cos(x) — sin(¢) sin(x)) —As(t) sin(0)(cos(¢) cos(f) sin(x) + sin(¢) cos(x))

| —sin(¢)sin(9) sinh(v))  —Az(t) sin(¢) sin(0) cosh(yp)  As(t)(cos(0) sin(¢) cos(x) + cos(¢) sin(x)) As(t) sin(0)(— cos(9) sin(¢) sin(x) + cos(¢) cos(x)) |




e EINSTEIN TELEPARALLEL SUB-CASE
It will be assumed that z = z(t,r) ¥ = ¥(z(¢t,7)) and x = x(2(¢,7)). We will choose coordinates so that

A3(zr(t,r)) = As(z(t,r)) without any loss of generality in the einstein teleparallel sub-case.|2]
ds? = —A%(z(t,7))dt® + A2(2(t,r))(dr? + r2d6? + r?sin?(0)dp?)

the co-frame components become
Ay (2) cosh(v)) As(z) sinh(vp) 0 0
Ai(z) cos(f) sinh(t)) As(z) cosh(v)) cos(6) As(2)r cos(x) sin(6) — Ay(2)rsin®(0) sin(x)

he, =

—A1(2) sin(0) cos(¢) sinh(yp) —As(z) cos(¢) sin(f) cosh(zp)  Az(z)r(cos(0) cos(¢) cos(x) — sin(@) sin(x)) —Az(z)rsin(f)(cos(¢) cos(#) sin(x) + sin(¢) cos(x))

| —A1(2) sin(¢) sin(f) sinh(v))  —Aaz(2)sin(¢) sin(6) cosh(th)  Az(2)r(cos(6) sin(p) cos(x) + cos(¢) sin(x))  A2(z)rsin(0)(— cos(6) sin(¢) sin(x) + cos(4) cos(x))

IV. Notes:

It is not yet clear whether we can make the substitution As(t,7) = r in general, in theory a spherically
symmetric metric need only two arbitrary functions to be fully defined, however the symmetries present in

the co-frame components don’t necessarily carry over to the metric.
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