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Abstract. Graphical methods have a long history in mathematics, dating back to Euclid’s
Elements. However, this tradition was abandoned in favour of Hilbert’s program. More re-
cently, research in topology and categorical algebra have driven a resurgence in the develop-
ment of graphical techniques. Of particular interest are the two-dimensional string diagrams
of categorical algebra, which share deep connections with quantum computation. This pa-
per reviews some important categorical concepts in the theory of quantum circuit diagrams,
and describes an ongoing effort to study controlled qudit operations through the lens of
three-dimension sheet diagrams.

1 Introduction

Graphical techniques have a long history in mathematics. For example, the work of Euclid in The
Elements relied heavily on the use of geometric figures [10]. Similarly, the field of graph theory (as
pioneered by Euler in 1736 [11]) reduces mathematical relations to diagrams of vertices and the
edges between them. However, graphical methods fell out of favour in mathematics at the end of
the nineteenth century, as Hilbert attempted to formalize all of mathematics [17]. It was not until
the second half of the twentieth century, that graphical methods would return with more rigorous
foundations. One well-known example is the use of Cayley graphs to study geometric properties
of groups [6]. Another example is the use of commuting diagrams in categorical algebra, which
visualize equations as paths through graphs [19]. As category theory has developed over time, the
simple insight of viewing equations as graphs has evolved into formal graphical languages for the
manipulation of equations up to isomorphism [21].

One such family of graphical languages, known as string diagrams, visually resemble the graph-
ical languages for logical circuit design used in computer science. In fact, the semantics of string
diagrams precisely capture the notion of sequential and parallel composition, such as the application
of logical gates to wires in a sequential circuit [14]. Surprisingly, these same diagrams capture the
notion of unitary operators in quantum mechanics [16]. It turns out that this connection between
computation and physics is fundamental, and has been well-studied relative to graphical languages
in prior work [1]. This connection lead to many practical contributions, such as Feynman’s proposal
for quantum computation as a means to simulate physical systems [12]. More recently, quantum
computation has been shown to solve computational problems as well [20].

This paper serves as a review for some important concepts in the theory of quantum circuit
diagrams. However, the story told by this paper deviates from the conventional narrative, by
emphasizing the bimonoidal structure of unitary quantum mechanics. This approach yields a new
perspective on controlled unitary operations using recent developments in string diagrams. For the
extended version of this paper see [26].

2 Background and Notation

This section reviews linear algebra and introduces some common definitions from category theory.
For a comprehensive introduction to category theory, see [19]. For more applied perspectives,
[3] introduces category theory for computer science, [5] introduces category theory for logicians,
[16] introduces category theory from the perspective of quantum mechanics, [23] provides a more
general introduction for scientists, and [13] outlines applications of category theory in probability.

This paper is concerned with unitary operators acting on finite-dimensional ℂ-vector spaces. For
the discussion that follows let 𝐴 be a 𝑛-dimensional ℂ-vector space with standard basis 𝑒1, 𝑒2, … , 𝑒𝑑.
Given a vector 𝑣 = 𝑎1𝑒1 + 𝑎2𝑒2 + ⋯ + 𝑎𝑑𝑒𝑛 in 𝐴, the norm of 𝑣 is ||𝑣|| = √∑𝑛

𝑗=1 |𝑎𝑗|2 where |𝑎𝑗|
is the complex modulus of 𝑎𝑗. If |𝑣| = 1, then 𝑣 is said to be a unit vector. Two vectors 𝑢 and 𝑣
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Fig. 1: The commuting diagrams for the definition of a category.
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Fig. 2: The commuting diagrams for functors and natural transformations.

are said to be orthogonal if 𝑢†𝑣 = 0 where (−)† is the conjugate transpose of 𝑢. A basis is said to
be orthonormal if it is composed from unit vectors which are pairwise orthogonal. Then a unitary
operator on 𝐴 is simply a complex matrix whose columns form an orthonormal basis for 𝐴.

Two common operations on vector spaces (and their operators) are the direct sum and Kro-
necker tensor product. The direct sum ⊕ and the Kronecker tensor product ⊗ are defined as follows,
where 𝑢 is an 𝑛-dimensional vector, 𝑣 is any vector, 𝑁 is an 𝑛 × 𝑚 matrix, and 𝑀 is any matrix.

𝑢 ⊕ 𝑣 = [𝑢
𝑣] 𝑢 ⊗ 𝑣 = ⎡⎢

⎣

𝑢1𝑣
⋮

𝑢𝑛𝑣
⎤⎥
⎦

𝑁 ⊕ 𝑀 = [𝑁 0
0 𝑀] 𝑈 ⊗ 𝑉 = ⎡⎢

⎣

𝑁1,1𝑀 ⋯ 𝑁1,𝑚𝑀
⋮ ⋱ ⋮

𝑁𝑛,1𝑀 ⋯ 𝑁𝑛,𝑚𝑀
⎤⎥
⎦

First note that ℂ𝑛 ⊕ ℂ𝑚 ≅ ℂ𝑛+𝑚 whereas ℂ𝑛 ⊗ ℂ𝑚 ≅ ℂ𝑛𝑚. If 𝑢 and 𝑣 are vectors, then ||𝑢 ⊕ 𝑣|| =
||𝑢||+||𝑣|| whereas ||𝑢⊗𝑣|| = ||𝑣|| ⋅ ||𝑣||. Furthermore, if 𝑈 and 𝑉 are unitary operators, then 𝑈 ⊕𝑉
and 𝑈 ⊗ 𝑉 are also unitary operators. The tensor and direct sum are bilinear in the sense that
𝑈 ⊗ (𝑉 ∘ 𝑊) = (𝑈 ⊗ 𝑉 ) ∘ (𝑈 ⊗ 𝑊) and (𝑈 ∘ 𝑉 ) ⊗ 𝑊 = (𝑈 ⊗ 𝑊) ∘ (𝑉 ⊗ 𝑊).

Matrix multiplication, the tensor product, and the direct sum, each define a unique way to
compose matrices. This yields equations with many connectives. This complex syntax leads to
complicated equations, which are challenging for humans to read and write inline [17]. One solution
to this problem is commuting diagrams, which depict function composition in terms of directed
graphs [19]. In a commuting diagrams, the vertices depict (co)domains, and the edges depict
functions between these vertices (for example, see Fig. 1). Any pair of paths with a common start
and end point compose to the same function. In the language of category theory, the vertices are
objects, and the edges are are morphisms [19]. Category theory studies collections of objects and
the morphisms they satisfy.

Definition 1 (Category [19]). A category 𝒞 is defined by a collection of objects 𝒞0 and the
following information.
1. For objects 𝐴 ∈ 𝒞0 and 𝐵 ∈ 𝒞0, a collection of morphisms 𝒞(𝐴, 𝐵).
2. For each object 𝐴 ∈ 𝒞, an identity morphism 1𝐴 ∶ 𝐴 → 𝐴.
3. For morphisms 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, a morphism 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶.

This information is subject to the conditions that Figs. 1a and 1b commute for all 𝑓 ∶ 𝐴 → 𝐵 and
Fig. 1c commutes for all 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶, ℎ ∶ 𝐶 → 𝐷.

Example 1. The category Unitary has complex vector spaces as objects, unitary matrices as mor-
phisms, and matrix multiplication as composition.

Many constructions in mathematics can be formalized as well-behaved mappings between cate-
gories. Well-behaved means that morphisms and their composition are respected by the mapping.
A common example from linear algebra is the embedding of a vector space into its double dual.
Naturally, the corresponding mapping would send both vector spaces and linear maps to their
double duals. In category theory, these well-behaved mappings are referred to as functors.
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(a) 𝑔 ∘ 𝑓 (b) 𝐴 ⊙ 𝐵 (c) 𝑓 ⊙ 𝑔 (d) 𝜎𝐴,𝐵

Fig. 3: The syntax and semantics of symmetric string diagrams [21]. Each morphism 1𝐴 is denoted
by an empty wire of type 𝐴. Wires of type 𝐼 are omitted.

Definition 2 (Functor [19]). A functor 𝐹 ∶ 𝒞 → 𝒟 between categories 𝒞 and 𝒟 is defined by
the following information.

1. For each 𝐴 ∈ 𝒞0, an object 𝐹0(𝐴) ∈ 𝒟0.
2. For each 𝑓 ∶ 𝐴 → 𝐵 in 𝒞, a morphism 𝐹(𝑓) ∶ 𝐹0(𝐴) → 𝐹0(𝐵).

This information is subject to the condition that 𝐹(1𝐴) = 1𝐹(𝐴) for all 𝐴 ∈ 𝒞0 and that Fig. 2a
commutes for all 𝑓 ∶ 𝐴 → 𝐵 in 𝒞.

Definition 3 (Bifunctor [19]). A functor 𝐹 ∶ 𝒞 × 𝒟 → 𝒦 is called a binfunctor if Fig. 2b
commutes for all 𝑓 ∶ 𝐴 → 𝐴′ in 𝒞 and 𝑔 ∶ 𝐵 → 𝐵′ in 𝒟.

Example 2. The Kronecker tensor product and the direct sum are both examples of bifunctors
from Unitary×Unitary to Unitary. This follows almost immediately from the bilinearity of the
Kronecker tensor product and direct sum.

In mathematics, it is often necessary to transform information between two functors. For exam-
ple, the isomorphism between a finite-dimensional vector space and its double dual is a structure
preserving transformation between the identity functor and the double dual functor. These struc-
ture preserving transformations between functor are known as natural transformations. Using the
language of natural transformations, it is also possible to define when bifunctors are unital, asso-
ciative, and commutative.

Definition 4 (Natural Transformation [19]). Let 𝐹, 𝐺 ∶ 𝒞 → 𝒟 be functors. A natural trans-
formation 𝛼 ∶ 𝐹 ⇒ 𝐺 assigns to each object 𝐴 ∈ 𝒞0 a morphism 𝛼𝐴 ∶ 𝐹0(𝐴) → 𝐺0(𝐴) such that
for all morphisms 𝑓 ∶ 𝐴 → 𝐵, the diagram in Fig. 2c commutes. If each 𝛼𝐴 is invertible, then 𝛼 is
called a natural isomorphism.

Example 3. Bifunctors generalize the notion of a binary operators to categories. From this perspec-
tive, it makes sense to ask that a bifunctor satisfy properties such as associativity and unitality.
This is done by defining a natural isomorphism which encodes the desired property up to isomor-
phism. In the cases of unitality and associativity, these natural isomorphisms are called unitors
and associators, respectively. The standard unitors and associators for the direct sum and tensor
product can be found in the extended version of this paper.

Many categories admit additional structures, such as sums and products. For example, the
category of vector spaces is endowed with the direct sum and the Kronecker tensor product. If a
category is endowed with a unital, associative, bifunctorial structure, then the category is monoidal.
There exists a graphical language for monoidal categories, known as string diagrams (see Fig. 3 for
the syntax and semantics). In this graphical language, equations hold up to planar deformations
(this is equivalent to the coherence conditions) [21]. However, most graphical languages trade away
some semantic information to achieve efficient graphical representations [17]. In the case of string
diagrams, the unitors and associators are neglected. However, the Strictification Theorem of [19]
allows for the unitors and associators to be neglected without loss of generality, provided that they
are not the objects of study.

Definition 5 (Monoidal Category [19]). A monoidal category is a category 𝒞 together with the
following information.

1. Monoidal Product. A bifunctor ⊙ ∶ 𝒞 × 𝒞 → 𝒞.
2. Unit Object. An object 𝐼 ∈ 𝒞0.
3. Left Unitor. A natural isomorphism 𝜆 ∶ 𝐼 ⊙ (−) ⇒ (−).
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(a) All permutations for 𝑑 = 2 and 𝑑 = 3. (b) Minimal relations.

Fig. 4: Relations for all permutation, as generated by transpositions and ⊕.

4. Right Unitor. A natural isomorphism 𝜌 ∶ (−) ⊙ 𝐼 ⇒ (−).
5. Associator. A natural isomorphism 𝛼 ∶ ((−) ⊙ (−)) ⊙ (−) ⇒ (−) ⊙ ((−) ⊙ (−)).

The isomorphisms 𝜆, 𝜌, and 𝛼 are subject to the coherence conditions as stated in the extended
version of this paper.

Definition 6 (Symmetric Monoidal Category [19]). A monoidal category 𝒞 with monoidal
product ⊙ is symmetric if there exists a natural isomorphism 𝜎 ∶ (−) ⊙ (−) ⇒ (−) ⊙ (−) such that
𝜎𝐴,𝐵 ∶ 𝐴 ⊙ 𝐵 → 𝐵 ⊙ 𝐴, 𝜎−1

𝐴,𝐵 = 𝜎𝐵,𝐴. Furthermore, 𝜎 must satisfy the coherence conditions as
stated in the extended version of this paper.

Example 4. Unitary is monoidal with respect to the direct sum (the unit object is ℂ0) and the
Kronecker tensor product (the unit object is ℂ).

3 Building Qudits Systems Through Sums and Products

Quantum computation studies finite-dimensional quantum systems [20]. For the purposes of this
discussion, the state of a quantum system can be thought of as a unit vector in ℂ𝑑 for some 𝑑 > 1.
The standard basis states for this vector space are denoted {|0⟩ , |1⟩ , … , |𝑑 − 1⟩}. When 𝑑 = 2, the
basis vectors |0⟩ and |1⟩ are obtained, which can be thought of as the 0 and 1 state of a bit in
traditional computing. For this reason, unit vectors in ℂ2 are referred to as qubits, which is short
for quantum bit. More generally, a unit vector in ℂ𝑑 is referred to as a qudit.

A qudit can exist in a superposition of multiple basis states [20]. In general, a qudit is a vector of
the form ∑𝑑−1

𝑛=0 𝛼𝑛 |𝑛⟩ where each 𝛼𝑛 ∈ ℂ and ∑𝑑−1
𝑛=0 |𝛼𝑛|2 = 1. The value |𝛼𝑛|2 can be interpreted

as the probability of observing basis state |𝑛⟩ when the quantum system is measured. Of course,
measurement is a physical process. This means that basis states are properties of physical systems.
For example, when 𝑑 = 2, a qubit may be realized as the spin of an electron, which has basis states
up and down [20].

A qudit system can be decomposed into its constituent components using the direct sum of
vector spaces. For example, ℂ2 ≅ ℂ ⊕ ℂ. More generally, ℂ𝑑 ≅ ⊕𝑑 ℂ where ⊕𝑑𝐴 ∶= ⊕𝑑

𝑛=1 𝐴. The
direct sum of vector spaces is symmetric in the sense of monoidal categories. The symmetries for
⊕ are as follows.

𝜏𝐴,𝐵 ∶ 𝐴 ⊕ 𝐵 → 𝐵 ⊕ 𝐴 𝜏𝐴,𝐵 ∶ |𝜑⟩ ↦ [ 0 1𝐵
1𝐴 0 ] |𝜑⟩

Given a quantum system with 𝑑 basis states, there are 𝑑-factorial ⊕-symmetries of the system.
These symmetries permute the basis states. For example, the permutations of ℂ2 and ℂ3 are
illustrated in Fig. 4a. In both examples, the permutations are written as sequences of transpositions
between adjacent basis states. It was shown in [18] that this decomposition is always possible, and
that equality in this form is decided by repeated application of the rules in Fig. 4a. We say that
the ⊕-symmetries of ℂ𝑑 are presented by ⊕ and 𝜏ℂ,ℂ with respect to the relations in Fig. 4b.

Unfortunately, Unitary with ⊕ does not capture all properties of quantum mechanics. In
particular, ⊕ not describe how to compose two distinct quantum systems into a larger quantum
system. To see why this is the case, simply note that the direct sum of two unit vectors is not
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𝐻 = 1√
2

[1 1
1 −1]

(a) Hamadard.

𝑋 = [0 1
1 0] = 𝜏ℂ,ℂ

(b) Pauli-𝑋.

= 𝜏ℂ,ℂ ⋅ [1 0
0 −1] ⋅ 𝐻

(c) A sheet diagram in Unitary.

Fig. 5: The unitaries 𝐻 and 𝑋, and constant −1, assembled into a sheet diagram.

a unit vector. However, the tensor product does preserve unit vectors, and also aligns with the
postulates of quantum mechanics [20].

The tensor product of two basis states, say |0⟩ and |1⟩, is denoted by |01⟩. An interesting
observation is that there exists states such as 1√

2 |00⟩ + 1√
2 |11⟩ which exist in ℂ2 ⊗ ℂ2, but cannot

be written as the tensor product of two elements in ℂ2. Physically, the two systems cannot be
decomposed without losing information. This phenomenon is known as entanglement [20]. A unitary
that gives rise to entanglement is referred to as an entangling operator. For example, given 𝐻 as
defined in Fig. 5a, the operator 𝑀 ∶= 1 ⊕ 𝐻 ⊕ 1 is entangling with respect to ℂ2 ⊗ ℂ2. This is
because 𝑀 |01⟩ = 1√

2 |01⟩ + 1√
2 |10⟩.

Since the monoidal category Unitary equipped with tensor product describes the composition
of quantum systems, then its string diagrams describe quantum computation with multiple qudits
of mixed dimensions. Dense generating sets are known for qudit systems of various dimensions,
given the ⊗-operator [25], though their relations are still an open area of research. For example, 𝐻,
1⊕1⊕𝑋, and 1⊕𝑒𝑖𝜋/8 generate all qubit operators up to arbitrary precision, though their relations
are only known for systems of up to 2 qubits [4]. It should come as no surprise that this category is
symmetric monoidal, since permutations of ℂ𝑛⊗ℂ𝑚 correspond to certain permutations of the basis
states in ⊕𝑛𝑚 ℂ Unfortunately, there is no general technique to write string diagrams for multiple
monoidal products1. Despite this, many ⊕-constructions still appear in quantum computation.

4 Interacting Structures: Sums and Products

The direct sum and tensor product on Unitary enjoy many nice properties. For example, the tensor
product of vector spaces distributes over the direct product of vector spaces, just as multiplication
distributes over addition. The monoidal unit for the direct sum also acts as an annihilator for the
tensor product, just as 0 ⋅ 𝑎 = 0 = 𝑎 ⋅ 0 for all 𝑎 ∈ ℂ. When two monoidal products interact in this
way, we say that the category is bimonoidal.

Definition 7 (Bimonoidal [9]). A category 𝒞 is bimonoidal with respect to a symmetric monoidal
structure (𝒞, ⊕, 𝟘, …) and a monoidal structure (𝒞, ⊗, 𝟙, …) given the following information.

1. Left Distributor. A natural isomorphism 𝑑𝑙 ∶ 𝐴 ⊗ (𝐵 ⊕ 𝐶) ⇒ (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶).
2. Right Distributor. A natural isomorphism 𝑑𝑟 ∶ (𝐴 ⊕ 𝐵) ⊗ 𝐶 ⇒ (𝐴 ⊗ 𝐶) ⊕ (𝐵 ⊗ 𝐶).
3. Left Annihilator. The natural isomorphism 𝑎𝑙 ∶ 𝟘 ⊗ 𝐴 ⇒ 𝐴.
4. Right Annihilator. The natural isomorphism 𝑎𝑟 ∶ 𝐴 ⊗ 𝟘 ⇒ 𝐴.

The natural isomorphisms 𝑑𝑙, 𝑑𝑟, 𝑎𝑙, and 𝑎𝑟 are subject to the 24 coherence axioms of [9].

It was shown in [9] that bimonoidal categories admit a generalized notion of string diagrams,
referred to as the language of sheet diagrams. However, the language requires that the equations
are in a normal form. First, the distributors 𝑑𝑙 and 𝑑𝑟 are used to rewrite each object as a sum
of products. For example, (𝐴 ⊕ 𝐵) ⊗ (𝐶 ⊕ 𝐷) is represented by the naturally isomorphic object
(𝐴 ⊗ 𝐶) ⊕ (𝐴 ⊗ 𝐷) ⊕ (𝐵 ⊗ 𝐶) ⊕ (𝐵 ⊗ 𝐷). Each term of the direct sum is then represented by a
vertical plane in ℝ3. Symmetries of the direct sum are expressed by crossing sheets, as illustrated
in Fig. 6a. A morphism of type 𝐴 → 𝐵 ⊕ 𝐶 is representing by a branching sheet, as in Fig. 6b. A
1 There do exist general constructions to obtain graphical languages for categories with two monoidal

products, such as proof nets [15, 21]. However, proof nets are not string diagrams since the monoidal
products are not depicted using spatial juxtaposition.
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(a) 𝜏𝐴,𝐵 (b) 𝐴 → 𝐵 ⊕ 𝐶 (c) 𝐴 ⊕ 𝐵 → 𝐶 (d) (𝑊 ∘ 𝑉 ) ⊕ 𝑈

Fig. 6: The syntax and semantics of sheet diagrams [9]. The rules of Fig. 3 still apply for the
multiplicative structure. The red lines denote sheet boundaries.

=

(a) A reversible circuit equality. (b) A proof sketch.

Fig. 7: A proof sketch for a non-trivial quantum circuit identity. This graphical language is impre-
cise, but illustrate a case-based argument.

morphism of type 𝐴 ⊕ 𝐵 → 𝐶 is representing by the merging of two sheets, as in Fig. 6c. Along
each sheet is a string diagram for the monoidal category (ℂ, ⊗, 𝟙) as in Fig. 6d. As in monoidal
categories, pulling gates along wires preserves equality of diagrams. Graphical rules exist to move
gates through direct sums, though these rules are not used in this paper. A sheet diagram for a
non-trivial unitary can be found in Fig. 5c.

5 Visualizing Controlled Qubit Gates

The direct sum of Unitary can be interpreted computationally as the switch statement from
sequential programming. For example, if 𝑈1 through to 𝑈𝑑 are unitaries acting on some vector space
𝐴, then 𝑀 ∶= 𝑈1 ⊕ 𝑈2 ⊕ ⋯ ⊕ 𝑈𝑑 is a unitary acting on ℂ𝑑 ⊗ 𝐴 such that 𝑀 |𝑗⟩ ⊗ |𝜑⟩ = |𝑗⟩ ⊗ 𝑈𝑗 |𝜑⟩.
In [22], this construction is referred to as a generalized control. Given a unitary 𝑈 acting on 𝐴, the
positively controlled version of 𝑈 is 𝐶(𝑈) ∶= 1𝐴 ⊕ 𝑈 , and the negatively controlled version of 𝑈 is
defined to be 𝐶−(𝑈) = 𝑈 ⊕ 1𝐴. Positive (resp. negative) controls are indicated by vertical wires
with black (resp. white) dots as in Fig. 7a

Recall the Pauli-𝑋 gate from Fig. 5b. Since 𝑋 |0⟩ = |1⟩ and 𝑋 |1⟩ = |0⟩, then 𝑋 has a com-
putational interpretation as the logical NOT-gate. The gates 𝑋, 𝐶(𝑋), and 𝐶(𝐶(𝑋)) are known
to be universal for reversible computation, meaning that invertible circuit can be written using
only 𝑋, 𝐶(𝑋), and 𝐶(𝐶(𝑋)) gates [24]. Unsurprisingly, networks of 𝐶(𝐶(𝑋)) gates are common
in quantum computation, and simplifying these networks is an important problem [20]. For exam-
ple, consider the identity in Fig. 7a. This can be proven using circuit identities as outlined in the
extended version of this paper, though these identities lack any geometric intuition. In Fig. 7b, a
more graphical argument in given, by considering the case where the control qubit is in state |0⟩,
and when the control qubit is in state |1⟩. It is shown that if the control qubit is in state |0⟩, then
𝐶(𝑋) is applied to the target, otherwise, the identity is applied to the target. It is concluded, by
linearity, that the gates on the left-hand side of Fig. 7a compose to 𝐶−1(𝐶(𝑋)). However, this
proof is very ad-hoc, and lacks a set of formal derivation rules. The goal of this section is to make
the argument of Fig. 7b precise via sheet diagrams.

The first step is to introduce a graphical notation for generalized controls. For each 𝑑 > 1, it
follows by dimensional analysis that ℂ𝑑 ⊗𝐴 is isomorphic to ⊕𝑑𝐴. To give an explicit isomorphism,
first note that each element of ℂ𝑑 ⊗𝐴 can be written as |0⟩⊗|𝜑0⟩+|1⟩⊗|𝜑1⟩+⋯+|𝑑 − 1⟩⊗|𝜑𝑑−1⟩
for some 𝜑0 through to 𝜑𝑑−1 in 𝐴. Using this example, the following map defines an isomorphism
between ℂ𝑑 ⊗ 𝐴 and ⊕𝑑𝐴.

𝛿𝐴 ∶
𝑑−1
∑
𝑛=0

|𝑛⟩ ⊗ |𝜑𝑛⟩ ↦ (|𝜑0⟩ , |𝜑1⟩ , … , |𝜑𝑑−1⟩) 𝛿−1
𝐴 ∶ (|𝜑0⟩ , |𝜑1⟩ , … , |𝜑𝑑−1⟩) ↦

𝑑−1
∑
𝑛=0

|𝑛⟩ ⊗ |𝜑𝑛⟩
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ℂ𝑑 ⊗ 𝐴 ⊕𝑑𝐴

ℂ𝑑 ⊗ 𝐵 ⊕𝑑𝐵

𝛿𝐴

1⊗𝑓

𝛿𝐵

⊗𝑑𝑓

(a) Isomorphism. (b) Graphical notation for 𝛿 (𝑑 = 2). (c) Graphical notation for 𝛿−1 (𝑑 = 2).

Fig. 8: A natural isomorphism between the direct sum and the Kronecker tensor product.

ℂ𝑑 ⊗ 𝐴 ⊕𝑑𝐴 ℂ𝑝 ⊗ 𝐴

ℂ𝑑 ⊗ 𝐵 ⊕𝑑𝐵 ℂ𝑝 ⊗ 𝐵

𝛿𝐴

1⊗𝑓

𝛿𝐵

⊗𝑑𝑓

𝛿−1
𝐴

𝛿−1
𝐵

1⊗𝑓

(a) Derivation of rule.

=

(b) Graphical depiction of rule (𝑑 = 2).

Fig. 9: A graphical rule to introduce controls derived from the isomorphism 𝛿.

This pair gives rise to the natural isomorphism in Fig. 8a, as proven in the extended version of this
paper. Graphical notation is given for this isomorphism in Figs. 8b and 8c. From this construction,
one can derive the common identity that given any 𝑑 > 1 and any unitary 𝑈 acting on 𝐴, the 𝑑-fold
generalized control built from 𝑑 copies of 𝑈 is equivalent to 1𝐵 ⊗𝑈 where 𝐵 = ℂ𝑑. A proof is given
in the extended version of this paper. The key insight for this proof is that 𝛿−1

𝐴 ∘⊕𝑑 𝑈 ∘𝛿𝐴 = 1⊗𝑈 ,
which follows from the commuting diagram in Fig. 9a and corresponds to the equality of sheet
diagrams in Fig. 9b.

Another common circuit identity is that conjugating a positive qubit control by an 𝑋 gate is
equivalent to negating the control. More generally, permuting the control qubit of a generalized
control corresponds to permuting the operators in the direct sum. The first step in proving this
result is to show that the diagram in Fig. 10a commutes. A proof is given in the extended version
of this paper. From this commuting diagram, the equality of sheet diagram in Fig. 10 is obtained.
This sheet diagram rule is used to prove the qubit case in the extended version of this paper.

At this point, it is possible to revisit Fig. 7a. A graphical proof is provided in the extended
version of this paper, using only the coherent deformations of sheet diagrams, together with the
rules derived thus far. It is shown at the end of the extended version of this paper, that each step
of the conventional proof aligns precisely with one or more consecutive steps of the graphical proof.
However, unlike the conventional proof, which follows entirely from circuit relations, the graphical
proof is motivated geometrically by the structure of the sheets.

6 Prospects and Limitations

In this paper, a graphical language was proposed for unitary circuits with generalized controls.
Sec. 5 illustrated how this language allows for case-based reasoning about controlled operations
in a purely categorical fashion. This reasoning was used to re-derive some well-known results
about qubits controls, together with an equational proof concerning 𝐶(𝐶(𝑋)) circuits. The primary
advantage of this new language is that the syntactic notion of a control wire becomes a geometric
property of the sheet diagrams used throughout the proofs.

However, this language does have limitations. For example, the notation introduced in Sec. 5
allows for constructions which lack physical motivation, such as in the extended version of this
paper. We suspect that this problem can be solved by refining the type system associated with
objects. For example, the direct summands in the definition of 𝛿 could be tagged with metadata
about the control qubit, to avoid their conflation with qudits in a composition system. However,
this type system would likely introduce challenges when typing the generators for the category.

To better understand this design space, there are further examples to consider. As outlined
in the extended version of this paper, one interesting family of examples are the Toffoli circuits of [8],
in terms of their relation to the inductively defined controlled operations of [2]. More generally, it
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ℂ2 ⊗ 𝐴 𝐴 ⊕ 𝐴

ℂ2 ⊗ 𝐴 𝐴 ⊕ 𝐴
𝑋⊗1𝐴 𝜏𝐴,𝐴

𝛿𝐴

𝛿𝐴

(a) Derivation of rule.

=

(b) Graphical depiction of rule.

=

(c) Graphical depiction of inverse rule.

Fig. 10: A graphical rule via natural isomorphism to pass an ⊕-symmetry through a control.

would be interesting to study the application of sheet diagrams to other bimonoidal categories with
computational interpretations, such as [7]. In both cases, the resulting diagrams would be difficult
to read, and challenging to typeset. This motivates the development of three-dimensional modelling
tools, such as in [9]. To enable automated reasoning with these tools, a bimonoidal presentation
for qudit unitary circuits would also be desirable.
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