Shifting Graphs

This question deals with shifting the function $f(x) = x^2$, but the results generalize to any function.

1. Draw the graph of $f(x) = x^2$.

Table of val	ues:						
x	-3	-2	-1	0	1	2	3
f(x)	9	4	١	0	1	Ч	9
		5 -4 -3			$f(x) + 2$ $f(x)$ $f(x) - \frac{1}{3}$	5	
2. On the above axes, draw the graphs of $f(x) + 2$ and $f(x) - 5$.							
Table of values for $f(x) + 2$: $f(x) > x^2$.							
x	-3	-2	-1	0	1	2	3
f(x) + 2	11	6	3	ð	3	۵	11
Table of value	ues for $f(x)$ –	5:					

$\mathbf{H}_{\mathbf{H}}$ IN GENERAL, for ANY function $f(x)$:			
1. $f(x) + k$ moves the graph of $f(x)$	by	K	units.
2. $f(x) - k$ moves the graph of $f(x)$	by	K	units.

Again, we're dealing with the function $f(x) = x^2$, which is drawn again here:

3. Draw the graphs of f(x+1) and f(x-2).

_	f	(x)	>	x
Table of values	for	f (x	+	1):

X	-3	-2	-1	0	1	2	3
f(x + 1)	f(-2) = (4)	f(-1) = f(-1)	f10)=0	f(i) > i	Ч	g	16

Table of values for f(x-2):

X	-3	-2	-1	0	1	2	3
f(x – 2)							

	IN GENERAL, for ANY fun	oction $f(x)$:			
1.	$f(x+k)$ moves the graph of $f(x)$ to the _	Lef+	by <u>K</u>	_ units.	
2.	$f(x-k)$ moves the graph of $f(x)$ to the _	right	by <u>K</u>	_ units.	

<u>Summary</u>

- **1. Vertical shifting:** f(x) + k or f(x) k; i.e., addition/subtraction of k is <u>OUTSIDE</u> the brackets of f(x).
- **2.** Horizontal shifting: f(x+k) or f(x-k); i.e., addition/subtraction of k is <u>INSIDE</u> the brackets of f(x).

Note that all this applies to ANY function f(x), not just for the example of x^2 we considered here!

Scaling Graphs

This question deals with the function f(x), which has the following graph:

2y **1.** On the above axes, draw the graph of 2f(x). (It might be helpful to make a table of values for f(x).)

3. Draw the graph of -f(x).

4. Draw the graph of -2f(x).

	IN GENERAL: For ANY function $f(x)$:							
1.	If $k > 1$, then $kf(x)$ Stretches the graph of $f(x)$ by a factor of <u>K</u> .							
2.	If $0 < k < 1$, then $kf(x)$ <u>Compresses</u> the graph of $f(x)$ by a factor of <u>[</u>							
3.	$-kf(x)$ first $\frac{5krekch}{compless}$ the graph of $f(x)$, then \underline{relex} it about the $\underline{\times}$ axis.							

Shifting and Scaling Example

The graph of a function is given. Draw the graph of the function resulting from the following:

- **1.** f(x-1)
 - Right 1

- **2.** f(x) + 3
 - UP 3

4. Tough one: 1 - 2f(x+3)

Consider the graph of $f(x) = \sin(x)$:

1. On the same axes above, draw the graph of sin(2x) (although not necessary, it might be helpful to use the following table of values):

x	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$	2π
sin(x)	0	0.7	1	0.7	0	- 0.7	- 1	- 0.7	
sin(2x)	Sinlaiola	510(7112)21	0	-1	0	١	0	-1	D

	IN GENERAL: For ANY function $f(x)$: If $c > 1$, then							
1.	. cf(x) Vert: cully Stretches			the graph of $f(x)$ by a factor of c .				
2.	f(x)/c	11 Com	nesse	the graph of $f(x)$ by a factor of c .				
3.	f(cx)	horizontally	Compress	the graph of $f(x)$ by a factor of c .				
4.	f(x/c)	<u> </u>	Stretch	the graph of $f(x)$ by a factor of c .				
5.	-f(x)	V cflects	_ the graph through the $\underline{}$	axis.				
6.	<i>f</i> (- <i>x</i>)	<i>L</i> 1	_ the graph through the \searrow	_axis.				