Shifting Graphs

This question deals with shifting the function $f(x)=x^{2}$, but the results generalize to any function.

1. Draw the graph of $f(x)=x^{2}$.

Table of values:

\mathbf{x}	-3	-2	-1	0	1	2	3
$\mathbf{f}(\mathbf{x})$	9	4	1	0	1	4	9

2. On the above axes, draw the graphs of $f(x)+2$ and $f(x)-5$.

Table of values for $f(x)+2$: $\quad f(x)=x^{2}$.

\mathbf{x}	-3	-2	-1	0	1	2	3
$\mathbf{f}(\mathbf{x})+\mathbf{2}$	11	6	3	2	3	6	11

Table of values for $f(x)-5$:

\mathbf{x}	-3	-2	-1	0	1	2	3
$\mathbf{f}(\mathbf{x})-\mathbf{5}$							

$\begin{aligned} y+k & \text { IN GENERAL, for ANY function } f(x) \text { : }\end{aligned}$

1. $f(x)+k$ moves the graph of $f(x)$ UP by K units.
2. $f(x)-k$ moves the graph of $f(x)$
by \qquad

Again, we're dealing with the function $f(x)=x^{2}$, which is drawn again here:

3. Draw the graphs of $f(x+1)$ and $f(x-2)$.

$$
f(x)=x^{2}
$$

Table of values for $f(x+1)$:

| \mathbf{x} | $(-3$ | -2 | -1 | 0 | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x+1)$ | $f(-2)=4$ | $f(-1)=(1)$ | $f(0)=0$ | $f(1)=1$ | 4 | 9 | 16 |

Table of values for $f(x-2)$:

\mathbf{x}	-3	-2	-1	0	1	2	3
$\mathbf{f}(\mathbf{x}-\mathbf{2})$							

IN GENERAL, for ANY function $f(x)$:

1. $f(x+k)$ moves the graph of $f(x)$ to the \qquad by $\frac{K}{K}$ units.
2. $f(x-k)$ moves the graph of $f(x)$ to the \qquad by units.

Summary

1. Vertical shifting: $f(x)+k$ or $f(x)-k$; ie., addition/subtraction of k is OUTSIDE the brackets of $f(x)$.
2. Horizontal shifting: $f(x+k)$ or $f(x-k)$; ie., addition/subtraction of k is INSIDE the brackets of $f(x)$.

Note that all this applies to ANY function $f(x)$, not just for the example of x^{2} we considered here!

Scaling Graphs

This question deals with the function $f(x)$, which has the following graph:

$2 y$

1. On the above axes, draw the graph of $2 f(x)$. (It might be helpful to make a table of values for $f(x)$.)
2. On the following axes, draw the graph of $\frac{1}{2} f(x)$. $\frac{1}{2} y$

3. Draw the graph of $-f(x)$.

$$
-y
$$

4. Draw the graph of $-2 f(x)$.

$$
-2 y
$$

IN GENERAL: For ANY function $f(x)$:

1. If $k>1$, then $k f(x)$ Strexchas the graph of $f(x)$ by a factor of \qquad
2. If $0<k<1$, then $k f(x)$ Compresses the graph of $f(x)$ by a factor of $_$K.
3. - $k f(x)$ first 5 rehch / compress the graph of $f(x)$, then reflect

Shifting and Scaling Example

The graph of a function is given. Draw the graph of the function resulting from the following:

1. $f(x-1)$

Right 1

2. $f(x)+3$

UP 3

3. $\frac{1}{2} f(x)-1 \quad$ BEDMAS
(1) $\frac{1}{2} f(x)$
(2) $\frac{1}{2} f(x)-1$

4. Tough one: $1-2 f(x+3)$

Draw the graph of $f(-x)$.

Consider the graph of $f(x)=\sin (x)$:

$$
f(2 x)=\sin (2 x)
$$

1. On the same axes above, draw the graph of $\sin (2 x)$ (although not necessary, it might be helpful to use the following table of values):

x	0	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π	$5 \pi / 4$	$3 \pi / 2$	$7 \pi / 4$	2π
$\sin ((1)$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
$\sin (2 x)$	$\operatorname{Sin}(2 \cdot 0)=0$	$\sin (\pi / 2)=1$	0	-1	0	1	0	-1	0

3. $f(c x)$ horizontally canpress
4. $f(x / c)$ \qquad stretch the graph of $f(x)$ by a factor of c.
5. $-f(x)$ \qquad the graph through the x axis.
6. $f(-x)$
