Inverse Trigonometric Functions

The function $f(x)=\sin (x)$ is graphed below (fill in some important points):

Does this function have an inverse? No Why? Fails HLT
It is very often useful to have inverses for commonly used functions (such as $f(x)=\sin (x)$). The inverse of this function may not exist, but we may achieve an inverse by restricting the domain of $f(x)=\sin (x)$ so that the following are accomplished:
a. We hit every value in its range, which is $[-1$,$] .$
b. We do not repeat any of these values (so that we get a $1: 1$ function).

Give some domain restrictions that accomplishes these tasks: $[-\pi / 2, \pi / 2],[\pi / 2,3 \pi / 2], \ldots$ Which one is correct? They are actually all correct, but by convention, well always use $\left[-\frac{\pi}{2} \frac{3}{2}\right]$ Now we can graph $f(x)=\sin (x)$ on that restricted domain. We can now also graph its inverse by reflecting about the line $y=x$.

Inverse of $f(x)=\sin (x)$, called $\sin ^{-1}(x)$ or $\arcsin (x)$

Therefore, if $f(x)=\sin (x)$ on the interval $[-\pi / 2, \pi / 2]$, then $f^{-1}(x)=\arcsin (x)$.

$$
D=[-1,1], \quad R=[-\pi / 2, \pi / 2]
$$

Example 1: Find arcsin $\left(\frac{1}{\sqrt{2}}\right)$. (Thought of differently, we want the angle x such that $\sin (x)=\frac{1}{\sqrt{2}}$).

$$
\sin (\pi \mid 4)=\frac{1}{\sqrt{2}} \Rightarrow \arcsin \left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}
$$

Note: There are actually a lot of angles x such that $\sin (x)=\frac{1}{\sqrt{2}}: \underline{3 \pi / 4,9 \pi / 4,11 \pi / 4, \ldots}$. Are all these correct as well? ND. Why?

$$
\text { Range of } \arcsin (x) \text { is }[-\pi / 2, \pi / 2]
$$

A similar thing can be done to obtain inverses for the other trigonometric functions. We will only study $\cos (x), \tan (x)$, and $\sec (x)$. Here are their graphs, respectively (again, fill in important points):

Graph of $f(x)=\cos (x)$

Domain restriction for $\cos (x)[0, \pi]$ Graph on restricted domain:

Graph of $\cos ^{-1}(x)$ or $\arccos (x)$

Graph of $f(x)=\tan (x)$

Domain restriction for $\tan (x)(-\pi / 2, \pi / 2)$ Graph on restricted domain:

Graph of $\tan ^{-1}(x)$ or $\arctan (x)$

 Graph on restricted domain:

Graph of $\sec ^{-1}(x)$ or $\operatorname{arc} \sec (x)$

$$
\begin{aligned}
& D=(-\infty,-1] \cup[1, \infty) \\
& R=[0, \pi / 2) \cup(\pi / 2, \pi]
\end{aligned}
$$

Summary of Inverse Trigonometric Function Properties $\quad f\left(f^{-1}(x)\right), f^{-1}(f(x))=x$

Example 2: Find the following:
(a) $\arccos (\sqrt{3} / 2) \quad \cos (\pi / 6)=\frac{\sqrt{3}}{2} \Rightarrow \arccos \left(\frac{\sqrt{3}}{2}\right)=\pi / 6$.
(b) $\sin ^{-1}(2)$ Does not exist. 2 not ir domain of \arcsin.
(c) $\arcsin (\sin (0.31))=0.31$
(d) $\arcsin \left(\sin { }^{(2.38))} \neq 2.38 . \rightarrow\right.$ Because 2.38 is not in Range of arcsin.
(e) $\sin \left(\begin{array}{l}\arcsin (2.38))\end{array}\right.$ Does not exist. 2.38 not in domain of arcsin.

Example 3: Simplify the function $\sin (\arctan (x))$ into algebraic form.
Let $y=\arctan (x)$ Want: $\sin (y)$

$$
\begin{aligned}
& \Rightarrow \tan (y)=\tan (\arctan (x)) \\
& \tan (y)=x \\
& \sin \left(\tan (y)=\frac{o p p}{\operatorname{adj}} \rightarrow \frac{x}{1}\right.
\end{aligned}
$$

