UPEI Mathematics Assessment Test - Practice Test
Click the appropriate buttons corresponding to your answers.
Do not use calculators, books, or notes of any kind.
Do not ask anyone for help while doing this test.
Time limit: 65 minutes.
Passing grade: 18 ⁄ 30 (60%).
Good luck, and ENJOY your exam!
QUESTION 1:
$\frac{2}{7}-\frac{1}{12} =$
(a) $~-\frac{1}{41}$
(b) $~\frac{1}{5}$
(c) $~\frac{33}{21}$
(d) $~\frac{17}{84}$
(e) $~-\frac{1}{5}$
QUESTION 2:
$\frac{(2^6 3^4)^{\frac{1}{2}}}{6^3} =$
(a) $~\frac{1}{3}$
(b) $~2$
(c) $~\frac{2}{3}$
(d) $~\frac{3}{2}$
(e) $~\sqrt{6}$
QUESTION 3:
$\frac{1}{\sqrt{5}-\sqrt{3}} =$
(a) $~\frac{\sqrt{5}+\sqrt{3}}{2}$
(b) $~\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{3}}$
(c) $~\frac{\sqrt{5}+\sqrt{3}}{8}$
(d) $~\frac{1}{\sqrt{2}}$
(e) $~\sqrt{2}$
QUESTION 4:
$\frac{2}{x-3}+\frac{2}{x+3} =$
(a) $~\frac{4x+12}{x^2-9}$
(b) $~\frac{2}{x}$
(c) $~0$
(d) $~\frac{4x}{x^2-9}$
(e) $~-\frac{1}{3}$
QUESTION 5:
In the following triangle, find the length of the side marked $x$.
(a) $~\sqrt{45}$
(b) $~45$
(c) $~5$
(d) $~25$
(e) $~\sqrt{193}$
QUESTION 6:
$(x-3)(x-7) =$
(a) $x^2+21$
(b) $~x^2+10x-5$
(c) $~x^2-10x+21$
(d) $~x^2-10x-21$
(e) $~x-10$
QUESTION 7:
If $x^2+9x+18=0$ then $x=$
(a) $~-3 \text{ only}$
(b) $~3 \text{ or } -6$
(c) $~-3 \text{ or } -6$
(d) $~-3 \text{ or } 6$
(e) $~3 \text{ or } 6$
QUESTION 8:
If $x-3y=9$ and $-x+y=-11$ then $(x, y)$ =
(a) $~(12, 1)$
(b) $~(1, 12)$
(c) $~(-1, 12)$
(d) $~(-1, -12)$
(e) no solution
QUESTION 9:
If $y=(5x-2)^7$ then $x=$
(a) $~\frac{\sqrt[5]{y}+2}{\sqrt[7]{2}}$
(b) $~\frac{\sqrt[7]{y+2}}{5}$
(c) $~\frac{y+2}{\sqrt[7]{5}}$
(d) $~\sqrt[7]{\frac{y+2}{5}}$
(e) $~\frac{\sqrt[7]{y}+2}{5}$
QUESTION 10:
Find the
remainder
when $x^3-4x^2+x-3$ is divided by $x-2$
(a) $~-2x-3$
(b) $~-9$
(c) $~x^2-2x$
(d) $~-3$
(e) $~x^2-2x-3$
QUESTION 11:
If $|-6x+5| \leq 11$ then
(a) $~x \geq -1$
(b) $~x \leq 8$
(c) $~x \geq -1 \text{ or } x \leq \frac{8}{3}$
(d) $~x \leq \frac{8}{3}$
(e) $~-1 \leq x \leq \frac{8}{3}$
QUESTION 12:
If $x^2+3 < 4x$ then
(a) $~x < 1$
(b) $~x < 3 \text{ or } x > 1$
(c) $~1 < x < 3$
(d) $~x < -3 \text{ or } x > -1$
(e) No solution
QUESTION 13:
$3^k+3^k+3^k =$
(a) $~3^{k+1}$
(b) $~9^{3k}$
(c) $~9^k$
(d) $~3^{3k}$
(e) None of these
QUESTION 14:
Find the
exact
value of $\log_{3}(6)+\log_{3}(15)-2\log_{3}(\sqrt{10})$
(a) $~2$
(b) $~\frac{2}{3}$
(c) $~1$
(d) $~0$
(e) Impossible without a calculator
QUESTION 15:
The distance between the points $(0,1)$ and $(-2, 5)$ is
(a) $~3$
(b) $~7$
(c) $~\sqrt{34}$
(d) $~\sqrt{20}$
(e) $~49$
QUESTION 16:
The equation of the line through the points $(4,-1)$ and $(-6,-1)$ is
(a) $~y=10x$
(b) $~y=-1$
(c) $~y=-10x-6$
(d) $~y=-10x+6$
(e) Undefined equation
QUESTION 17:
What is a possible equation of the following graph?
(a) $x^2+y^2=25$
(b) $\frac{x^2}{5}+\frac{y^2}{4}=1$
(c) $\frac{x^2}{25}+\frac{y^2}{16}=1$
(d) $\frac{x^2}{16}+\frac{y^2}{25}=1$
(c) $\frac{x^2}{4}+\frac{y^2}{5}=1$
QUESTION 18:
If $f(x) = 2x^3+x+12$ then $f(-2) =$
(a) $~-6$
(b) $~28$
(c) $~-2$
(d) $~14$
(e) $~0$
QUESTION 19:
What type of function is likely to be depicted in the following graph?
(a) Logarithmic
(b) Exponential
(c) Polynomial
(d) Trigonometric
(e) Power
QUESTION 20:
If $g(x) = x^3$ then $g(x+h)$ =
(a) $~x^3+h^3$
(b) $~x^2+2xh+h^2-x+h$
(c) $~x^3+3x^2h+3xh^2+h^3$
(d) $~x^3+x+h$
(e) $~x+h$
QUESTION 21:
If $f(x) = \frac{8}{x+2}$, for what value of $x$ does $f(x)=5$?
(a) $~8$
(b) $~\frac{2}{5}$
(c) $~1$
(d) $~\frac{8}{7}$
(e) $~\frac{-2}{5}$
QUESTION 22:
What is the domain $D$ and range $R$ of the function $f(x)=\ln(x)$?
(a) $D=(0, \infty); ~R=(-\infty, \infty)$
(b) $D=(-\infty, \infty); ~R=(-\infty, \infty)$
(c) $D=(-\infty, \infty); ~R=(0, \infty)$
(d) $D=(-\infty, 0); ~R=(-\infty, \infty)$
(e) $D=(0, \infty); ~R=(0, \infty)$
QUESTION 23:
How many times does the graph of the function $f(x)=(x^2-5)(x^2+1)(x-3)$ cross the $x$ - axis?
(a) Never
(b) Once
(c) Five times
(d) Four times
(e) Three times
QUESTION 24:
A bucket is leaking water at a rate of 2 litres every minute. How long will it take for the bucket to empty (in minutes)?
(a) $~2$
(b) $~4$
(c) $~6.5$
(d) $~7.2$
(e) Not enough information
QUESTION 25:
For a right triangle with sides of length $5, 12$ and $13$, with $\theta$ being the angle formed by the sides of length $12$ and $13$, $\tan(\theta) =$
(a) $~\frac{5}{12}$
(b) $~\frac{12}{13}$
(c) $~\frac{12}{5}$
(d) $~\frac{5}{13}$
(e) $~\frac{13}{5}$
QUESTION 26:
If $\sin(\theta) = \frac{2}{5}$ and $\theta$ is in the first quadrant, then $\tan(\theta)=$
(a) $~\frac{2}{5}$
(b) $~\frac{-2}{\sqrt{21}}$
(c) $~\frac{2}{\sqrt{21}}$
(d) $~\frac{-2}{5}$
(e) $~\frac{\sqrt{21}}{5}$
QUESTION 27:
How many degrees is $\frac{5\pi}{4}$ radians?
(a) $~50$
(b) $~90$
(c) $~120$
(d) $~225$
(e) $~95$
QUESTION 28:
An angle $\theta$ measures $\frac{2\pi}{3}$ radians. Find $\sin(\theta)$.
(a) $~\frac{-1}{2}$
(b) $~\frac{\sqrt{3}}{2}$
(c) $\frac{-\sqrt{3}}{2}$
(d) $\frac{-1}{\sqrt{2}}$
(e) $~\frac{1}{\sqrt{2}}$
QUESTION 29:
$\sin^2(3x)+\cos^2(3x) =$
(a) $~\cos^2(6x)$
(b) $~\sin^2(6x)$
(c) $~0$
(d) $~1$
(e) $~2$
QUESTION 30:
What is the
exact
value of $\arccos(0)$ in radians? Note: This is the same as asking for the value of $\cos^{-1}(0)$.
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{2}$
(c) $90$
(d) Does not exist
(e) Impossible without a calculator